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Accelerator Based Production of °Mo
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ANL and LANL are assisting NorthStar in
development of accelerator based production of ‘Y —_— Q _» O
%Mo through the 1°Mo(y,n)**Mo reaction. )
High-energy Mo-100 Mo-99
Enriched 1Mo is commercially available for ~$1000 PhGLoRs 6}
per gram for kg quantities. Neutron
E
High energy photons are created from a high power ¥
electron beam through bremsstrahlung. Yime, = Nm f om (v, ) ®g (E)dE
Eth
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N,, — atom density of material m
E,, — threshold energy in m
®.,(E) — photon fluence spectrum
o(y,n) — cross section

Average bremsstrahlung photon spectra
produced with 20- and 35-MeV electron
beams in a Mo target compared to the
photonuclear cross section of 1°°Mo.




Molybdenum cycle

Mo recycled
from 5M KOH
to form MoO;,

and reduced




Disks production

MoO, reduced by disk manufacturer to Mo powder and sintered
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MoO Mo powder

Disks provided by NorthStar (also getting disks from ORNL)
Every disk is characterized by a 3 digit code “ABC” e.g. “791”
A= powder treatment before pressing

B= disk pressing parameters

C= sinter conditions

Disk density determined from dimensions of the disks and divided by density of Mo
metal (10.22g/mL)

GOAL: Find conditions for the production of Mo disks with high packing density (>92%)
and good dissolution rates
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Dissolution of Mo sintered disks in 30% H,0,

= 2Mo(s) + 10H,0,= [Mo,0,(0,),(H,0),]* + 2H,0* + 5H,0
= |nitial pH=5, after dissolution pH =1-2
= 1 Mo disk ~1g, 40mL of 30% H,0, at 70°C, H,0,:Mo molar ratio ~35

| auto-destruction of hydrogen peroxide
to water and oxygen:

2H,0, = 2H,0 + O,

After dissolution KOH added to make
0.2g-Mo/mL in 5M KOH

2[Mo,0,(0,),(H,0),]% + 8KOH = 4K,M00,+(H,0), + 50,



Effect of sinter conditions on density and dissolution

" Pre-sinter conditions A=0, 7,9
=  Pressing conditions B=4

= Sinter conditionsC=1, 2,7, 9
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= packing densities increase with stronger sintering conditions
= stronger sinter “C” conditions lead to the lowest dissolution rates

= the best dissolving disks are with stronger pre-sinter (A=7-9) and weaker sinter conditions (C=1-2)
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Effect of Mo powder size

Pre-sinter conditions A=5, 7, 9
Pressing conditions B=4

Sinter conditions C=1, 2

= No significant effect on density for
disks sintered at C=1, 2

= Disks made of finer particles (higher
mesh) dissolve faster

| mesh | 25 | 40 | 100 | 140 | 200 | 300 | 400 | 500 | -500_
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Effect of Mo powder size

Pre-sinter conditions A=7, 8, 9 = Density increases with increasing “C”
Pressing conditions B=4 = Dissolution rate decreases with increasing “C”
Sinter conditions C=6, 7, 8, 9 = -400 mesh disks dissolve faster then -20 mesh
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Effect of pressing conditions cont.

= Pre-sinter conditions A=7
= Pressing conditions B=8-11
= Sinter conditions C=1, 2,6, 8
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packing densities for the disks with C=1: 90.7-92.6% diss. rates: ~0.6 g/min
packing densities for the disks with C=2: 90.3-93.6% diss. rates: ~0.4 g/min
packing densities for the disks with C=6: 89.4-94.7% diss. rates: ~0.28-0.14 g/min
packing densities for the disks with C=8: 93-94.7% diss. rates: ~0.16-0.08 g/min (heating)
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Effect of pressing conditions cont.

<14 % 419% Open POrosity. « 1 '» 5 305 Open Porosity

“ 7 3.8% Open Porosity

Optical micrographs of “791”, “792” “796” and “798” disks provided by ORNL
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Dissolution - summary

Dissolution rates of disks pre-sintered at A=7 and sintered at different conditions with

densities ~¥92-94%
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Best dissolving disks are pre-sintered at higher temperature A=7-9 and sintered at C=1-2

Densities for fastest dissolving disks (A=7-9, C=1-2) can be increased >92% by increased

pressing parameter “B”

Dissolution rates for disks with >90% density are mostly affected by “C” sintering conditions
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Mo recovery

= Mo solution 0.2g-Mo/mL in 5M KOH: 1.8kg of K per 1kg of Mo
= Final product: ~25 ppm K —~99.999% of K needs to be removed,
= >98% of Mo recovered

Purification from potassium

Mo in 5M KOH precipitated using glacial CH;COOH, CH;CH,OH or their mixture (H,SO,
also tested)

AcA
= Small-scale experiments with 1-5 mL of K,MoO,

= EtOH precipitate Mo as K,Mo00,

= more ppt forms with AcA — Mo-acetate interaction
cloudy solution containing Mo develops over time

= EtOH + AcA — no ppt. over time
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Mo recovery

diss. + ppt

First 4 steps — 95-99% of potassium removed

99.9% purification — 1500 ppm of K

AcA; EtOH/AcA

AcA

HNO,

H,0+NH,OH - AcA ppt

HNO,
HNO,
HNO,
HNO,
HNO,
HNO,

65-75%
10-15%
5-10%
0-5%
<0.5%
<0.1%
<0.1%
<0.1%
<0.1%
<0.1%

0-3%
<1%
0-15%
0-3%
0-15%
0-2%
<0.5%
<0.5%
<0.5%
<0.5%

clear
cloudy
cloudy
cloudy
clear
clear
clear
clear

clear

Optimizing Mo recovery — first washing steps are the most critical

Mo ppt formed after AcA — can be filtered

Mo ppt formed after HNO;- very fine — cannot be filtered (0.2um)

v

| step L reagent _____Kremoved L__Moloss L coution _JIIGAWER)

cloudy; clear
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Mo recovery - potassium analysis

Mo precipitate after final wash — dissolved and analyzed by K* ISE, ICP-MS, ICP-OES

Sample matrix Detection limit for K Issues
Mo K K* ISE ICP-MS ICP-OES K* ISE ICP-MS ICP-OES
8000 0.2 ppm 0.2-0.4 >0.2ppm >1ppm Cation 100 ppm Detection
ppm ppm interfere TDS limit
25 ppm K/Mo
K* ISE ICP-MS
A EtOH AcA HNO;,  NH,OH/AcA HNO; 54 ppm 103 ppm 100%

B AcA/EtOH AcA  HNO, NH,OH/AcA HNO, 45ppm  96ppm  96.7%

~99.997% of K removed
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Mo recovery - summary and future plans

Good Mo recovery 97-100% obtained if HNO; washes allowed to sit for several hours

Purification of potassium <100 ppm (99.997% removed) — work continues

XRD characterization of Mo precipitate — converting to MoO,

Side products purification experiments upcoming

Al, Zr, Nb, Rh, Sb (50 ppm/Mo), W (400 ppm/Mo)

If no selective purification:
Nb and W follow Mo (100%)
Al = 30-40 ppm (60-80%)

Sb = <20 ppm (30-40%)

Zr =~1.4 ppm (2-3%)

Rh =~0.6 ppm (~1%)

Possible purification options for side products
= Precipitation after dissolution of Mo target
= (Cation exchange

- before loading into generator

- during Mo recovery process
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