Argonne Chemical-Processing Activities in Support of the Development of γ,n Production of Mo-99

D.A. Rotsch, P. Tkac, J. Harvey, G.F. Vandegrift Chemical Science and Engineering Argonne National Laboratory 9700 Cass Avenue, Argonne IL. 60439 – USA

ABSTRACT

Technetium-99m, currently provided to consumers from ${}^{99}\text{Mo}/{}^{99\text{m}}\text{Tc}$ generators, is well-known for its uses in radiopharmaceuticals. Argonne National Laboratory is assisting NorthStar Medical Radioisotopes in developing accelerator-based production of ${}^{99}\text{Mo}$ using photonuclear reaction ${}^{100}\text{Mo}(\gamma,n){}^{99\text{m}}\text{Mo}$ with enriched ${}^{100}\text{Mo}$ targets. ${}^{100}\text{Mo}$ -enriched metallic discs are irradiated, dissolved in H₂O₂, converted to K₂MoO₄ with KOH, and then loaded onto a TechneGen Generator. ${}^{99\text{m}}\text{Tc}$ and ${}^{99/100}\text{Mo}$ are loaded onto a column in the TechneGen Generator and the ${}^{99/100}\text{Mo}$ washed from the column. ${}^{99\text{m}}\text{Tc}$ is then eluted from the column, purified and ready for chelation. Once the ${}^{99/100}\text{Mo}$ feed solution has decayed, the solution needs to be treated to recover and recycle the valuable ${}^{100}\text{Mo}$. To reuse ${}^{100}\text{Mo}$, the FDA requires that recycled materials are at or below the purity of the original material. Experimental data on dissolution of sintered Mo disks, separation of ${}^{99\text{m}}\text{Tc}$ from ${}^{99/100}\text{Mo}$ using TechneGen generator, and recovery of Mo will be presented.