
IAEA Activities Supporting Mo-99 Production without the use of HEU

> Joanie Dix ⁹⁹Mo Topical Meeting Washington, DC 24-27 June 2014

IAEA Organization for ⁹⁹Mo Work

IAEA Priorities for ⁹⁹Mo

HEU Minimization

Transition of ⁹⁹Mo production away from the use of highly enriched uranium (HEU)

Stability of Supply

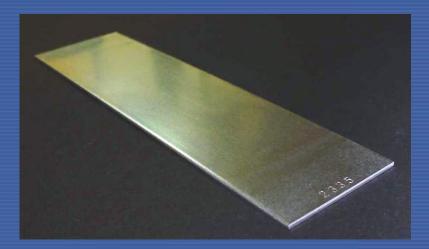
Diversification of supply and movement to full cost recovery to ensure the global demand is met

⁹⁹Mo IAEA Projects

The IAEA can assist Member States in their ⁹⁹Mo work through various types of activities. These include:

- Coordinated Research Projects
- Technical Cooperation Projects
- Regular program activities
 - Networks and coalitions
 - Participation in complimentary, international activities
 - Meetings
 - Missions
 - Publications
 - General Conference side-events

Conversion of Major ⁹⁹Mo Producers to LEU


- Supported by US DOE-NNSA and the Government of Norway
- Series of working group meetings for key stakeholders to review progress, exchange information and explore opportunities for mutually beneficial collaboration
- Receiving updates on LEU high-density targets, and accompanying chemical processes
- Most recent meeting took place 27-28 January 2014

Small-scale, non-HEU ⁹⁹Mo production

- Draft publication on Feasibility of Small-Scale ⁹⁹Mo
 Production using LEU Fission or Neutron Activation Methods
 - In final review now; scheduled for publication in 2014
 - Incorporates the results of the Coordinated Research Project on small-scale production (2005-2011)

Small-scale, non-HEU ⁹⁹Mo production

- Technical Cooperation Project started in 2013
- Aimed at assisting small-scale, national-level producers in setting up their production capability;
 - NOT aimed at creating commercial producers
- Will rely on LEU fission or n,gamma-based production
- Open to any IAEA Member States wishing to receive advice and assistance
- Production infrastructure fact-finding missions were completed to Mexico, Morocco, Peru, Poland, and Romania. Similar missions were conducted in Egypt (2010) and Malaysia (2011)

Small-scale, non-HEU ⁹⁹Mo production

Expert Missions

- ⁹⁹Mo production project progress review missions
- Production infrastructure readiness missions
- IAEA and project counterpart missions to ⁹⁹Mo production facilities and laboratories

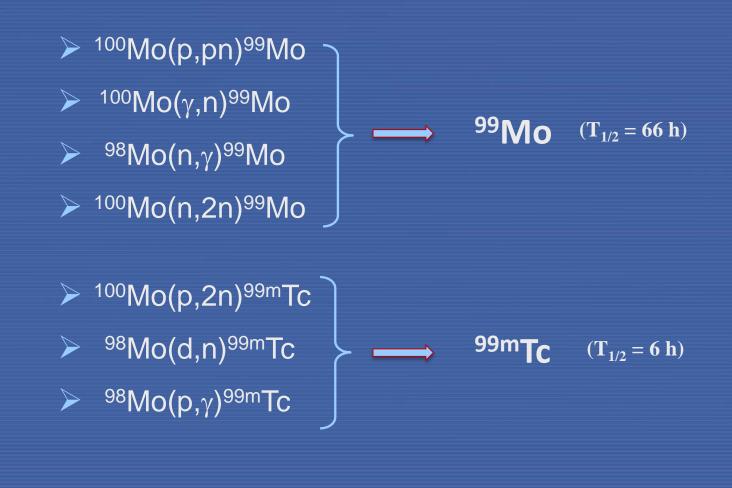
• EURASIA Coalition work

 Reactors in Eastern Europe and former Soviet states cooperating to produce low specific activity ⁹⁹Mo via neutron capture of ⁹⁸Mo (launched in 2008)

Full Cost Recovery & Managing ⁹⁹Mo Waste Streams

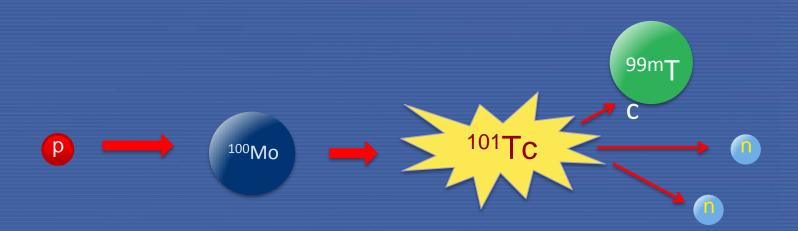
- Intended to study technical and economic aspects of ⁹⁹Mo waste streams in cooperation with the OECD-NEA
- Work on this study was halted due to the low response rate (<50%)
- Without this information, the study would not have the necessary data to contribute any meaningful analysis

Coordinated Research Project on Accelerator-based Alternatives to Non-HEU Production of ⁹⁹Mo/^{99m}Tc



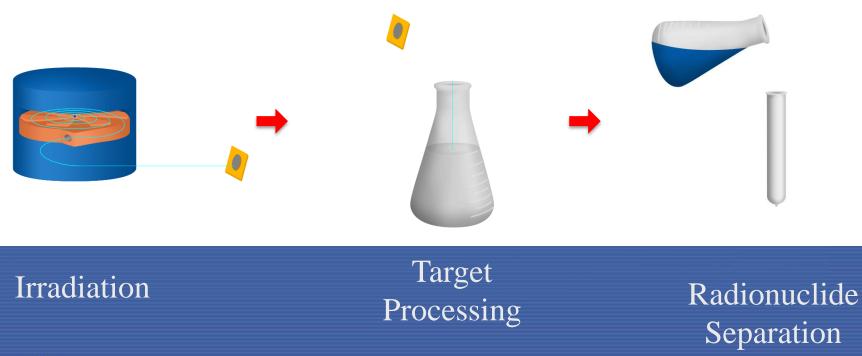
Participating Countries

- ARMENIA
- BRAZIL
- CANADA
- HUNGARY
- INDIA
- ITALY
- JAPAN
- KINGDOM OF SAUDI ARABIA
- POLAND
- SYRIA
- UNITED STATES



Alternative Routes to ⁹⁹Mo/^{99m}Tc Production

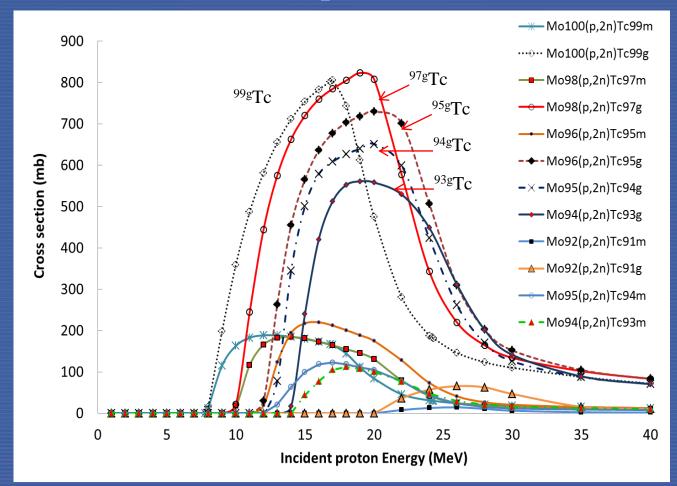
Cyclotron Production of ^{99m}**Tc**



¹⁰⁰Mo(p,2n)^{99m}Tc

Cyclotron Production of ^{99m}**Tc**

¹⁰⁰Mo(p,2n)^{99m}Tc


Main issues

- Target preparation (withstand heat generated by the beam)
- Radionuclidic separation Mo/^{99m}Tc: fast and high yield
- Recovery of the target: enriched and high cost
- Radionuclidic impurity: choose optimum beam energy, time of irradiation and decay time; select the target carefully!
- Delivery of ^{99m}Tc

Radionuclidic Impurities

^{100,9x}Mo(p,2n)^{9x}Tc series

AEA

16

Radionuclidic Impurities

z	95Ru 1.643 H € 100.00%	96Ru STABLE 5.54%	97Ru 2.83 D 6: 100.00%	98Ru STABLE 1.87%	99Ru STABLE 12.76%	100Ru STABLE 12.60%	101Ru STABLE 17.06%	102Ru STABLE 31.55%	103Ru 39.247 D β-: 100.00%
43	94Tc 293 M €: 100.00%	95Tc 20.0 H €: 100.00%	96Tc 4.28 D € 100.00%	97Tc 4.21E+6 ¥ €:100.00%	98Tc 4.2E+6 Υ β-: 100.00%	99Tc 2.111E+5 Υ β-: 100.00%	100Tc 15.46 S β-: 100.00% €: 2.6E-3%	101Tc 14.02 M β-: 100.00%	102Tc 5.28 S β-: 100.00%
42	93Mo 4.0E+3 Y €: 100.00%	94Mo STABLE 9.15%	95Mo STABLE 15.84%	96Mo STABLE 16.67%	97Mo STABLE 9.60%	98Mo STABLE 24.39%	99Μο 65.976 Η β-: 100.00%	100Mo 7.3E+18 Υ 9.82% 2β-:100.00%	101Mo 14.61 M β-: 100.00%
41	92Nb 3.47E+7 Υ ε: 100.00% β- < 0.05%	93Nb STABLE 100%	94Nb 2.03E+4 Υ β-: 100.00%	95Nb 34.991 D β-: 100.00%	96Nb 23.35 H β-: 100.00%	97Νb 72.1 M β-: 100.00%	98Νb 2.86 S β-: 100.00%	99Νb 15.0 S β-: 100.00%	100Nb 1.5 \$ β-: 100.00%
40	91Zr STABLE 11.22%	92Zr STABLE 17.15%	932r 1.61E+6 Υ β-: 100.00%	94Zr STABLE 17.38%	952r 64.032 D β-: 100.00%	962r 2.35E+19 Ψ 2.80% 2β-	972r 16.749 Η β-: 100.00%	98Zr 30.7 S β-: 100.00%	99Zr 2.1 S β-: 100.00%
	51	52	53	54	55	56	57	58	N

Optimized Production Conditions

- Target enrichment: \geq 99.05 %
- Proton Energy Window: 15 > Ep > 20 MeV
- Irradiation Time: < 3 hours
- Proton Current: 400 μA
- In-Target Yield: ~ 6 Ci

Points of Contact

 Nuclear Energy – Research Reactor Section J.Dix@iaea.org E.Bradley@iaea.org

 Nuclear Science & Applications – Radioisotope Products and Radiation Technology Section J.A.Osso-Junior@iaea.org M.Venkatesh@iaea.org

