Future Supply of 99Mo, 99mTc
Mark Frontera, GE Global Research Center
June 26th, 2014

Aaron Bernstein b, Tomas Eriksson d, Mathilde Figon b, Karin Granath d, Martin Orbe d, Charlie Shanks b, Erik Stromqvist d, Julie Woodland c, Peter Zavodszky a, Uno Zetterberg d

a GE Global Research Center, Niskayuna, NY 12309 USA
b GE Healthcare Global Supply Chain, Arlington Heights, IL 60004 USA
c GE Healthcare Life Sciences, Amersham, England UK
d GE Healthcare Cyclotrons, Uppsala, Sweden

Imagination at work.
GE Healthcare Nuclear Medicine Presence

Life Sciences & Global Supply Chain

- 99mTc based Products on global market
- 99mTc Generators serving 38 Countries
- 31 United States Radio pharmacies

Nuclear Cameras

- +5,500 Cameras sited
- Multiple Product Offerings

PET Cyclotrons

- 330 Cyclotrons sited
- 10 MeV, 16 MeV Platforms

Illustrations:
- Brain, Sentinel Lymph Nodes, Heart, Lungs, Kidneys, Liver, White blood cell labelling, Rheumatoid arthritis
- 99mTc Technetium Generators Cardiology, Neurology, Oncology Other diseases
Today’s Supply Chain
Tomorrow’s Supply Chain?
Medical Cyclotron Installed Base
Cyclotron 99mTc Production

Some Challenges: Regulatory Path & 100Mo Supply Model

<table>
<thead>
<tr>
<th>Beam Current (µA)</th>
<th>Production Volume (Ci)</th>
<th>Estimated Number of 25 mCi dose per 6 hour run (assuming 50% loss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>130 (IB)</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>250 (IB Upgrade)</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>400 (Future)</td>
<td>15</td>
<td>300</td>
</tr>
</tbody>
</table>

(Left) TRIUMF-designed, GE PETtrace solid target capsule; (right) with mounted 100Mo target
Reference: P Schaffer, personal communication.

(Left) Enriched 100Mo target mounted on a copper test backing; (Right) enriched 100Mo after 6hr, 130 µA irradiation (Schaffer, 2014)
In Summary

• Global supply chain challenges of ^{99}Mo, FCR, and conversion to LEU production will stress the current medical imaging supply chain.

• GE is positioned to maintain its current role as a provider of nuclear cameras, agents, ^{99}Mo generators, and radio pharmacies.

• With regulatory and support establishing a ^{100}Mo supply chain, a global introduction of cyclotron produced ^{99m}Tc may enable a stronger ORC position and local supply independence in 2017.
 • Also enables additional tolerance to program, economic, and engineering delays of the alternate production techniques entering the market from 2016 to 2020.

• Government, Industry, Academia and Entrepreneurs must collaborate to provide a stable supply of isotopes from today to beyond 2020.
Works Cited

• Bénard, F. e. (2014). Implementation of Multi-Curie Production of 99mTc by Conventional Medical Cyclotrons. Journal of Nuclear Medicine, 1017-1022.
• Galea, R. e. (2013). A comparison of rat SPECT images obtained using 99mTc derived from 99Mo produced by an electron accelerator with that from a reactor. Physics in medicine and biology, 2737.
• OECD. (2010). The Supply of Medical Radioisotopes: An Economic Study of the Molybdenum-99 Supply Chain. NUCLEAR ENERGY AGENCY.