Mo-99 2015 TOPICAL MEETING ON MOLYBDENUM-99 TECHNOLOGICAL DEVELOPMENT

AUGUST 31-SEPTEMBER 3, 2015 HILTON BOSTON BACK BAY BOSTON, MASSACHUSETTS

Engineering and Design Activities at Los Alamos National Laboratory Supporting Commercial U.S. Production of ⁹⁹Mo without the Use of HEU

Gregory E. Dale, David J. Alexander, Scott A. Baily, Kip A. Bishofberger, Cynthia E. Buechler, Dale A. Dalmas, David S. Decroix, Michael A. Holloway, Charles T. Kelsey IV, Robert H. Kimpland, Steve K. Klein, Iain May, Michael Mocko, Angela C. Naranjo, Arthur Nobile, Brett S. Okhuysen, Eric R. Olivas, Maria I. Peña, Sean D. Reilly, Heidi Reichert, Daniel Rios, Frank P. Romero, Craig M. Taylor, Robert M. Wheat, and Keith A. Woloshun

Los Alamos National Laboratory, P.O. Box 1663, Mail Stop H851, Los Alamos, NM 87545

ABSTRACT

Los Alamos National Laboratory (LANL) is supporting the commercial U.S. production of ⁹⁹Mo as part of the National Nuclear Security Administration (NNSA) office of Materials Minimization and Management (M^3) program to accelerate the establishment of a reliable domestic supply of ⁹⁹Mo without the use of highly enriched uranium (HEU). In partnership with several other national laboratories, we are currently providing engineering design and support to NorthStar Medical Radioisotopes and SHINE Medical Technologies. The NorthStar technology uses an electron beam from an electron accelerator incident on enriched ¹⁰⁰Mo targets to produce ⁹⁹Mo through the (γ ,n) photonuclear reaction. The SHINE technology uses a subcritical accelerator-driven uranium solution to produce fission product ⁹⁹Mo. LANL personnel are providing engineering and design support to both of these companies as part of the M³ program. This presentation will give an overview of the two technologies, our support activities, and recent experimental results.