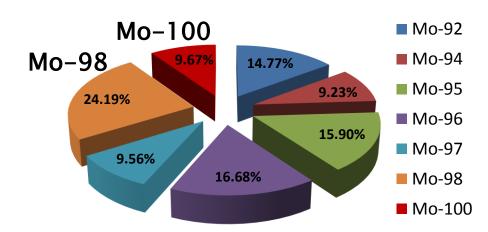
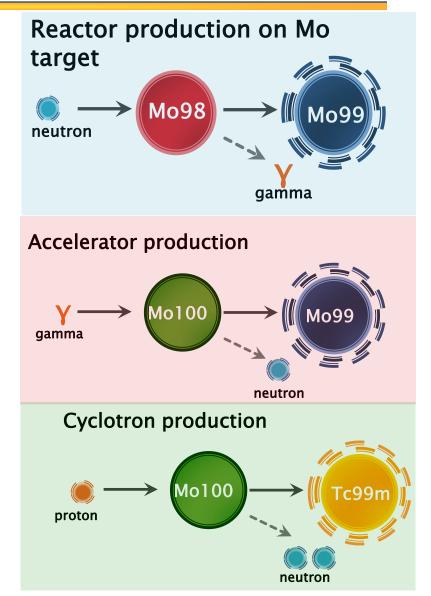


Chemical Processing Activities for 99 Mo production by (γ ,n) and (n, γ) reactions using enriched 100 Mo and 98 Mo targets

Peter Tkac, David Rotsch, Alex Brown, Dominique Stepinski, Vakhtang Makarashvili, George Vandegrift

Nuclear Engineering Division, Argonne National Laboratory

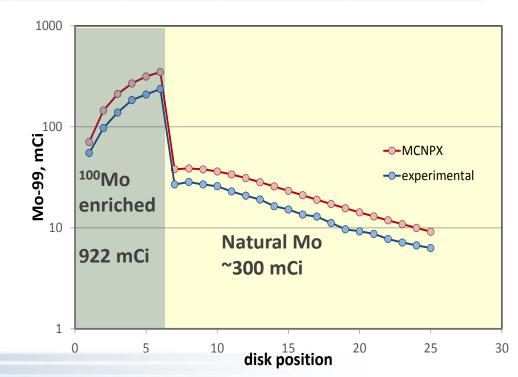

Mo-99 Topical Meeting, August 31-Sepetember 3, 2015


ANL support to NorthStar

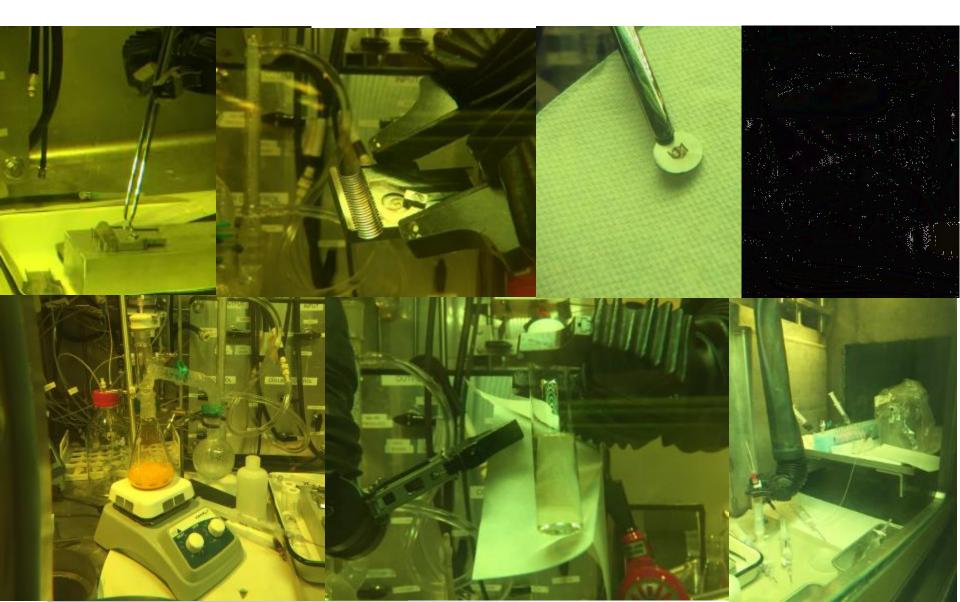
- Irradiation of sintered Mo targets using electron linac
- Chemical processing of irradiated targets
- Optimization of sintered Mo disks for density and dissolution kinetics
- Large scale dissolution process (300-600g of Mo per batch)
- Front-End purification of irradiated Mo
- Recycle process to recover valuable enriched ⁹⁸Mo and ¹⁰⁰Mo
- Radiation stability studies at VDG

Production of ⁹⁹**Mo**/^{99m}**Tc without U targets**

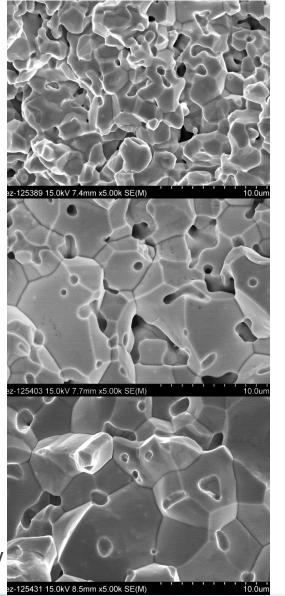
Enriched Mo-100 is available for ~\$1000 per gram for kg quantities!!!



۵

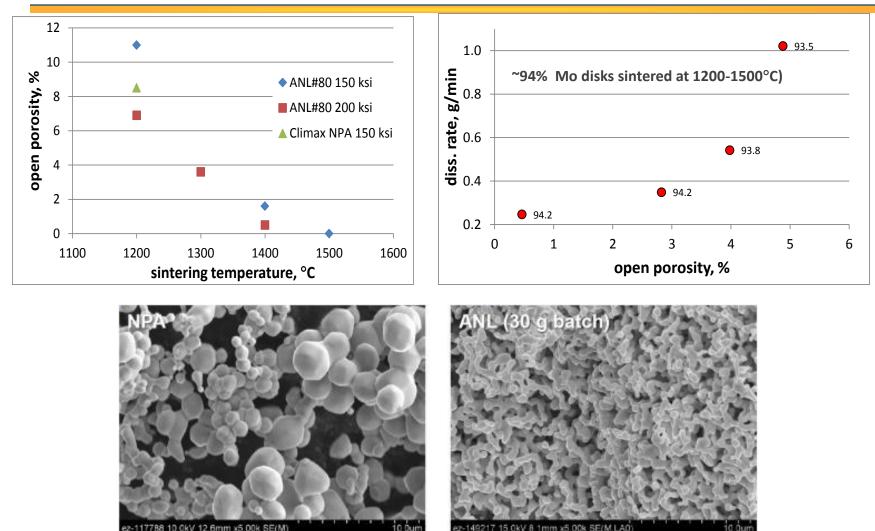

FY 15 production of ⁹⁹Mo at ANL

¹⁰⁰ Mo (position)	⁹⁹ Mo in 6 disks, Ci	power	Current	Time, hrs.	Energy
99% (1-6)	0.92	4kW	95µA	19	42 MeV
97.4% (3-8)	2.9	7.56kW	180µA	21	42MeV
95.1% (3-8)	2.2	7.56kW	180µA	19	42MeV
99% (3-8)	4.2	7.77kW	222μΑ	24.4	35MeV

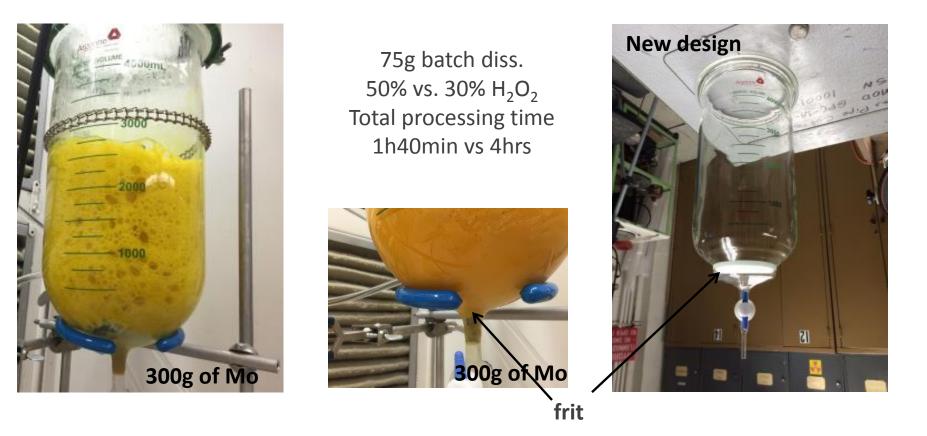


Processing of irradiated disks

Optimizing sintered Mo disks production (ANL &ORNL)

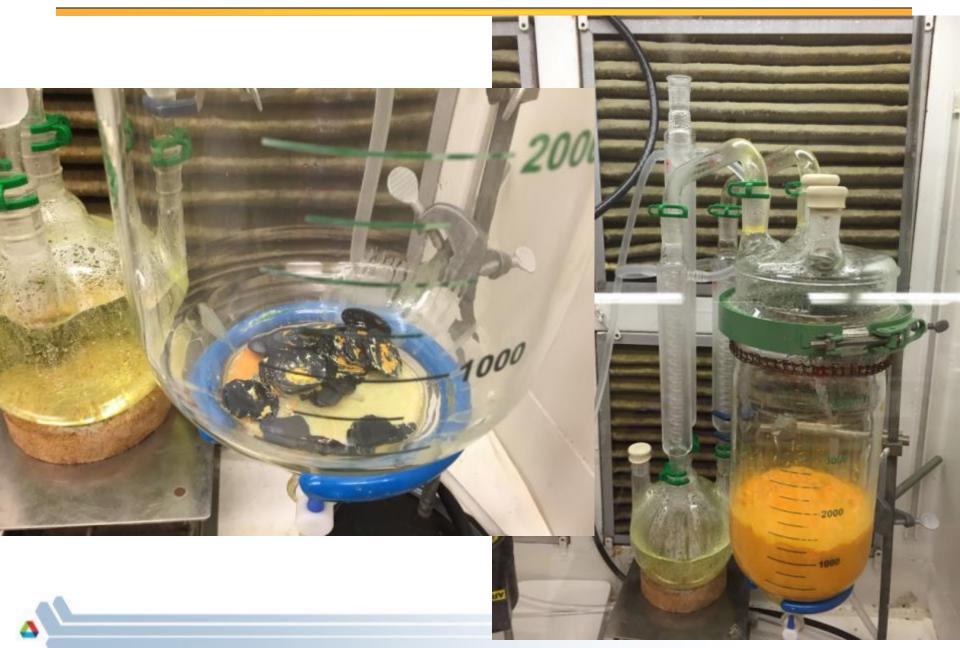


SEM Images provided by Steve Nunn (ORNL) 1400°C Density = 89.7% Open Porosity = 7.1% Diss. Rate = 0.623 g/min


1500°C Density = 91.9% Open Porosity = 0.2% Diss. Rate = 0.361 g/min

1600°C Density = 94.0% Open Porosity = 0% Diss. Rate = 0.186 g/min

Optimizing sintered Mo disks production (ANL &ORNL)


SEM Images of As-received Commercial NPA Powder and Reduced Small Batch (30 g) of ANL Recycled MoO₃ Powder. SEM images provided by Rick Lowden (ORNL).

Dissolution in H₂O₂ >>> evaporation/ H₂O₂ destruction >>> Fe co-precipitation of Zr&Nb >>> filtration >>> KOH added to make ~200g/L Mo in ~5M KOH

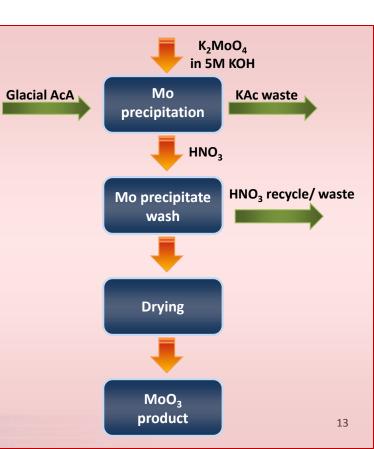
#	H ₂ O ₂ , %	diss. vessel, L	Mo, g	dissolution, hrs	evaporation, hrs	total, hrs	concentration step
1	50	2	75	0.5	1.5	2	open to atm.
2	50	2	75	0.5	1.2	1.7	open to atm.
3	30	2	75	0.5	3.5	4	open to atm.
4	50	5	300	2	5.8	7.8	vacuum
5	50	5	300	2.7	6	8.7	vacuum
6	50	5	300	2	6.8	8.8	vacuum
7	30	5	300	1.4	6.4	7.8	vacuum
8	50	5	300	1.5	0.6	2.3	vacuum
9	50	5	300	1.3	0.7	2.2	vacuum

Removal of Zr and Nb

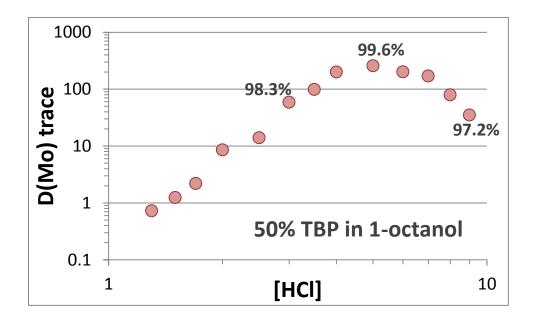
	Removal of Zr and Nb, %					
рН	filtration 0.7% vol 4% vol 0.7% vol 4% vol 10 0.22µm Fe(III) Fe(III) Fe(III)+Fe(II) Fe(III)+Fe(II)					10mg/mL HZO
12	99.9	99.0	98.9	99.5	99.7	99.9
13	99.9	99.9	99.1	100	99.7	100
14	99.3	99.2	99.6	99.3	99.6	99.5
5M OH ⁻	72.5	73	76.8	73.3	73.7	84.4

	Removal of Zr and Nb with 1µl/mL 30% H ₂ O ₂ , %							
рН	filtration 0.22µm							
12	82.4	83.2	75.4	95.4	16.8	76.8		
13	74.4	77.8	99.8	100	83.5	99.9		
14	19.6	37.2	95.3	77.6	3	45.7		
5M OH ⁻	7.6	37.6	62.1	55.2	2	15.6		

Fe=1M, La=10mg/mL


Large scale recovery of Mo by precipitation

- 1.5L of spent generator solution in 5M KOH containing ~300 g of Mo (MURR samples)
- 80% of K removed in AcA precipitation
- Mo precipitate washed with conc. HNO₃ (~7.5L of HNO₃ per wash, up to 9-10 washes are needed) ~75L of conc. HNO₃ used per batch
- Remove residual HNO₃ by heating
- Final Mo product as MoO₃ ready for reduction

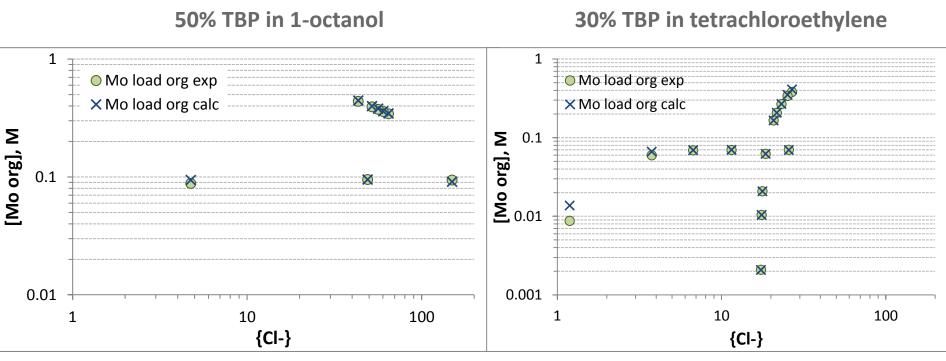

Mo recovery: ~95%, product MoO₃ K concentration in purified product <100mg-K/kg-Mo

Published in J. Radioanal. Nucl Chem., 2015 DOI: 10.1007/s10967-015-4357-1 http://link.springer.com/article/10.1007/s10967-015-4357-1

Recovery of Mo by solvent extraction (tributyl phosphate)

Distribution ratio:
$D_{Me} = \frac{[Me]_{o}}{[me]_{o}}$
$D_{Mo} - $

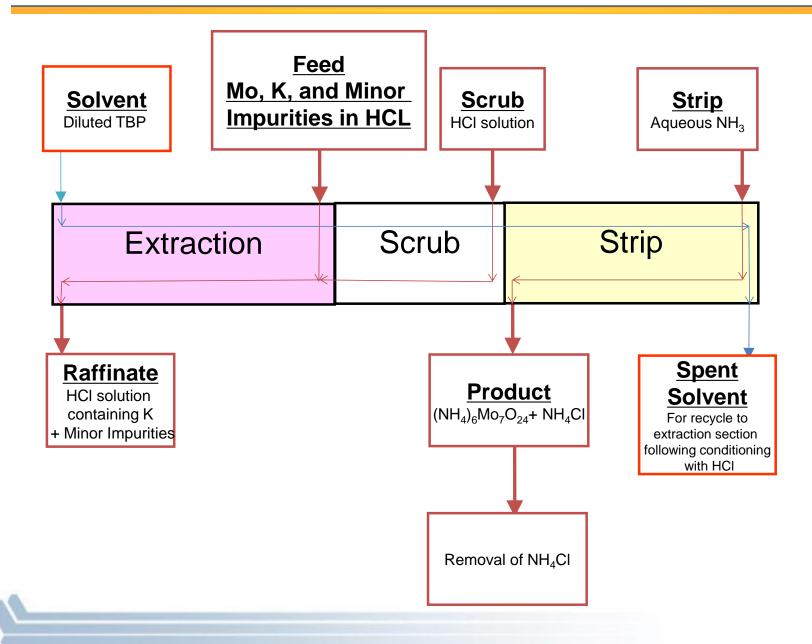
$$P_{Me} = \frac{[Me]_{org}}{[Me]_{aq}}$$


K distribution ratio $D_{K}=1 \times 10^{-4} - 1 \times 10^{-5}$

Mo, M	HCI, M	Extr. %
0.35	7.1	97.6%
0.36	6.9	97.5%
0.38	6.8	97.1%
0.40	6.6	97.4%
0.45	6.2	97.2%

50% TBP in 1-octanol

Recovery of Mo by solvent extraction-extraction modeling



Extraction constants determined for two Mo-TBP species:

 $HMoO_2Cl_3 \cdot 2TBP$ $MoO_2Cl_2 \cdot (TBP \cdot HCl)_2$

Recovery of Mo by solvent extraction

Recovery of Mo by solvent extraction-back end processes

Mo Strip	Evaporation	Sublimation at ~340°C	Differential solubility in
NH ₄ OH solution	NH ₄ OH solution		ethanol-water mixture
NH₄CI	NH₄CI	Solid mixture	Solid mixture NH₄Cl
(NH ₄) ₆ Mo ₇ O ₂₄	(NH ₄) ₆ Mo ₇ O ₂₄	NH ₄ Cl (NH ₄) ₆ Mo ₇ O ₂₄	(NH ₄) ₆ Mo ₇ O ₂₄
Acetic acid ppt Ethanol wash	NH ₄ OH waste	NH ₄ Cl solid waste	NH ₄ Cl solid waste
	,		/
MoO ₃ product at		MoO ₃ product at	(NH ₄) ₆ Mo ₇ O ₂₄
500 °C		500°C	500°C
			MoO ₃ product

Recovery of Mo by solvent extraction

Mo ppt after wash with AcA and EtOH

~500g of MoO₃ sent to ORNL for reduction to Mo metal and production of sintered Mo disks

Recovery of Mo by solvent extraction

	Mo in KOH	5M HCl	strip	ammonium molybdate	MoO ₃
		рр	m (mg/kg-M	o)	
В	ND	ND	2.0	9.1	ND
Na	9439	9712	24.7	10.9	9.3
Mg	29.6	21.7	4.8	4.0	5.1
AI	8.3	8.46	2.8	ND	ND
Si	ND	ND	ND	ND	ND
Р	ND	ND	1838	ND	ND
Ti	26.7	64.1	37.3	13.7	12.4
Cr	ND	ND	5.2	ND	ND
Mn	1.9	0.55	0.4	ND	ND
Fe	ND	ND	ND	ND	ND
Со	ND	ND	ND	ND	ND
Ni	ND	ND	0.8	ND	ND
Cu	5255	7.7	23.3	ND	7.8
Zn	12.4	ND	24.6	2.4	3.1
Zr	0.6	0.37	0.1	ND	ND
Nb	2.8	1.53	1.5	2.9	2.7
Sn	86.2	19.2	22.3	24.0	20.5
Sb	4.7	4.1	4.2	ND	ND
Cs	0.8	0.66	0.7	0.2	0.1
W	237	259	138	164	159
К	1933673	1217949	454	257	233
K (%)	100%	63.0%	0.023%	0.013%	0.012%

Acknowledgement

ANL –S. Chemerisov, R. Gromov, Ch. Jonah, T. Heltemes, M. Virgo, K. Wardle, C. Pereira, J. Copple, Y. Tsai, M. Kalensky, M. Bennett, A. Hebden, L. Hafenricher, K. Alford, K. Wesolowski,
LANL – G. Dale, F. Romero, K. Woloshun, M. Holloway, D. Dalmas,
ORNL –R. Lowden, S. Nunn, Ch. Brian.....
NorthStar – J. Harvey....

Work supported by the U.S. Department of Energy, National Nuclear Security Administration's (MMM) Office , under Contract DE-AC02-06CH11357.

The submitted presentation has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.