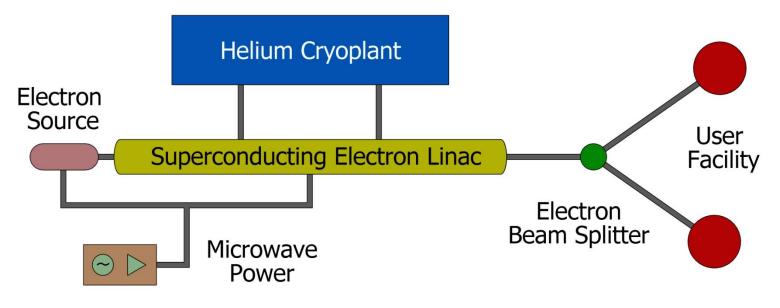
Niowave's Domestic Production of Mo-99 from Uranium to Start in 2015

Terry L. Grimm, Stephen S. Barnard, Chase H. Boulware, Amanda K. Grimm, Jerry L. Hollister, Mayir Mamtimin, and Valeriia N. Starovoitova *Niowave, Inc. Lansing MI*

> September 2015 Presented at the Mo-99 Topical, Boston MA

- Superconducting Linacs and Their Applications
- Mo-99 Production with Linacs
 - Conceptual Design
 - Superconducting Electron Linac
 - Intense Neutron Source
 - Uranium Targets (LEU)
 - Mo-99 Production and Recovery
 - Uranium Target Recovery
- Licensing (NRC and State of Michigan)
- Niowave Facilities


Why Superconducting?

- 10⁶ lower surface resistance than copper
 - Most RF power goes to electron beam
 - CW/continuous operation at relatively high accelerating gradients >10 MV/m
- Large aperture resonant cavities
 - Improved wake-fields and higher order mode spectrum
 - Preserve high brightness beam at high average current (high power)

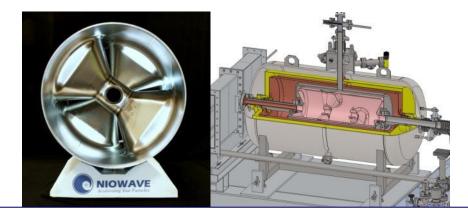
Superconducting Turnkey Electron Linacs

Turn-key Systems

- Superconducting Linac
- Helium Cryoplant
- Microwave Power
- Licensing

Electron Beam Energy	0.5 – 80 MeV
Electron Beam Power	$1 \mathrm{W} - 400 \mathrm{kW}$
Electron Bunch Length	~5 ps

Turnkey Linac Subsystems

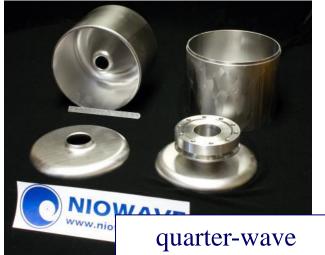

RF electron guns

High-power couplers

Solid-state and tetrode RF amplifiers (up to 60 kW)

Superconducting cavities and cryomodules

Commercial 4 K refrigerators (rugged piston-based systems, 100 W cryogenic capacity)


- Superconducting linacs have inherent losses due to the time varying fields frequency $R_{BCS} \propto f^2 \exp\left(-\frac{T_c}{T}\right)$ operating temperature
- For commercial electron linacs the minimum costs for a system occur around:
 - 300-350 MHz (multi-spoke structures)
 - 4.5 K (>1 atmosphere liquid helium)

Superconducting Accelerating Cavities

Variety of new SRF cavity shapes are allowing compact, low-frequency acceleration with high average beam power.

- Advantages for low frequency, high current linacs
 - Mechanical stability (stable against microphonics)
 - Compact geometry for improved real-estate gradient and lowfrequency operation at 4 K
 - Improved higher-order-mode (HOM) spectrum and damping

• IOTs to 90 kW

solid-state

- Klystrons to >1 MW
- Tetrode amplifer to 60 kW

• Solid-state supplies to 5 kW

RF Power Sources

CW RF power

klystron

Commercial 4 K Refrigerators

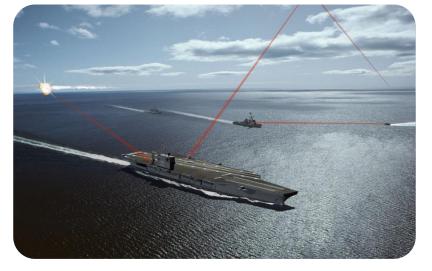
- Cryo-cooler to 5 W
 - 4.5 K operation
 - 5 kW electrical power
- Commercial refrigerator to 110 W
 - 4.5 K operation (slightly above 1 atm)
 - total electrical power 100 kW
 - higher capacity units available

5 W cryocooler

2 & 10 MeV Injectors

	test beam dump	Parameter	2 MeV	10 MeV
		cathode type	thermionic	thermionic
	SRF booster cavity	NCRF electron gun energy	100 keV	100 keV
		SRF booster cavity energy	2 MeV	10 MeV
low-energy electron transport beamline		bunch repetition rate (gun, booster frequency)	350 MHz	350 MHz
		transverse normalized rms emittance	3-5 mm mrad	3-5 mm mrad
		bunch length @ 2 MeV	2-5 ps	2-5 ps
		average beam current	2 mA	1-2 mA

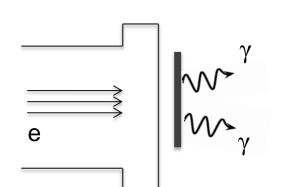
Commercial Uses of Superconducting Electron Linacs

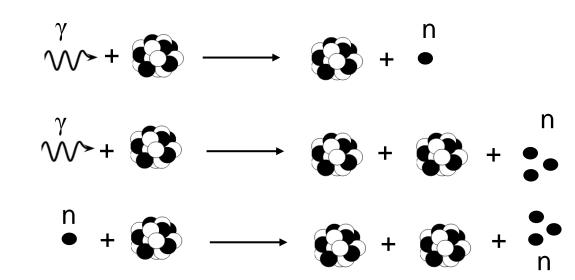


X

High Power X-Ray Sources

Radioisotope Production


High Flux Neutron Sources

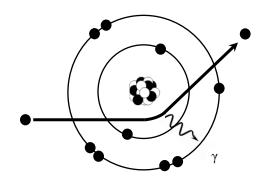


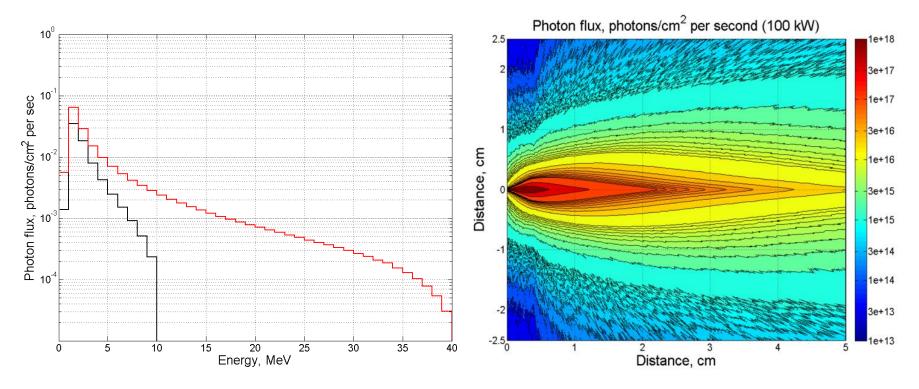
Free Electron Lasers

Electrons are accelerated

Electrons brake and produce photons

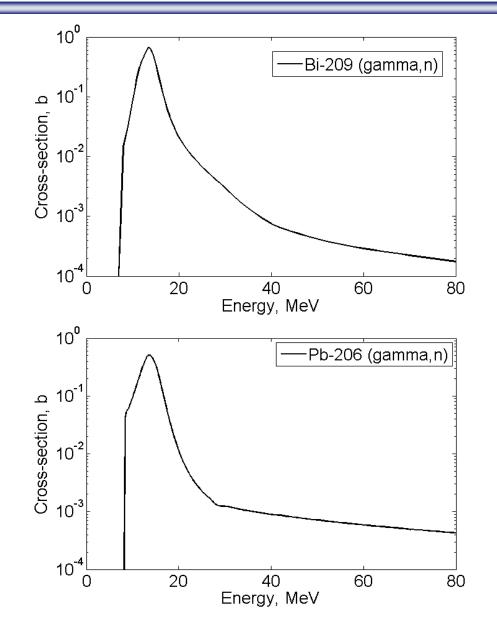
Neutrons are generated by:


- a) (γ,n) reactions
- b) Photo-fission
- c) Neutron-induced fission



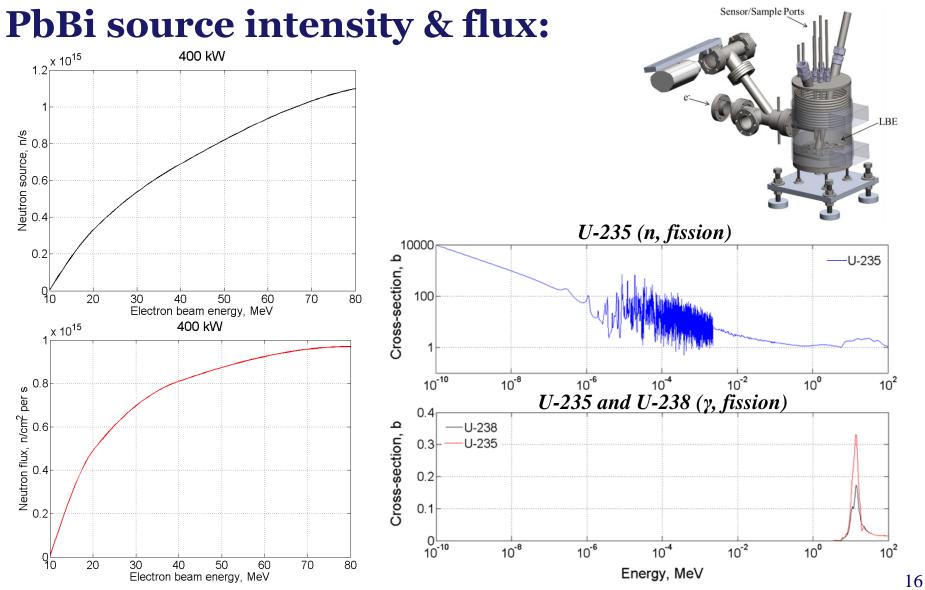
Intense Neutron Source [2]

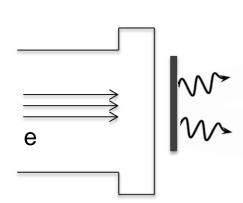
Breaking radiation (bremsstrahlung photons):

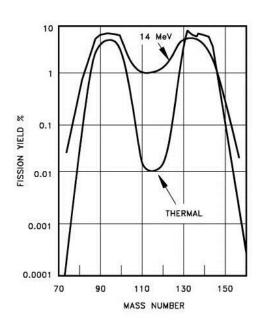


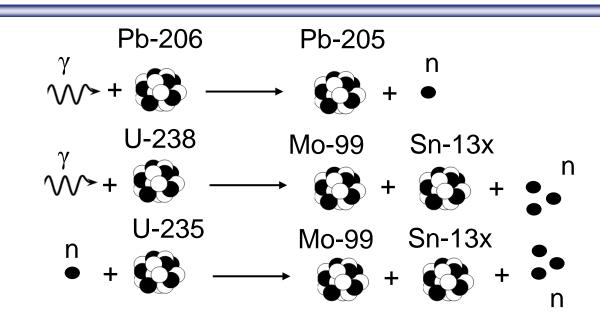
Intense Neutron Source [3]

Lead-Bismuth Eutectic (PbBi):


- High conversion efficiency (Z=82,83)
- Low melting point (124°C)
- High boiling point
- (1670 °C)


Intense Neutron Source [4]



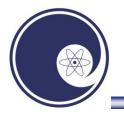


Mo-99 Production

- Time of irradiation 1 week
- Mo-99 activity per rod 0.1 kCi
- Total Mo-99 produced 9 kCi/week

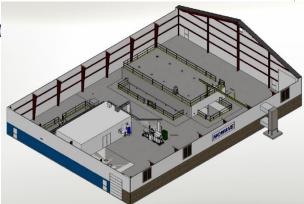
Niowave Facilities [1]

• 60,000 square feet


- Engineering & design
- Machine shop
- Fabrication & welding
- Chemistry facility
- Class 100 Cleanroom
- Cryogenic test lab
- Two operating 100 W cryoplants

• Test Facilities (2)

- 3 megawatts power available at both
- Licensed to operate up to 40 MeV and 100 kW


Lansing, Michigan Headquarters

Niowave Facilities [2]

- Headquarters test facility
 - Prototype and commission
 - 40 MeV superconducting electron linac

- 2012 Dedication of test facility at headquarters
 - Keynote speakers: Senator Carl Levin, Senator Debbie Stabenow, Rear Admiral Matthew Klunder and MSU Provost Kim Wilcox

Headquarters Test Facility

The high-power test facility at Niowave headquarters allows parallel development on multiple superconducting linacs

- 3 MW electrical power available
- three below-grade trenches for source and cavity testing
- two shielded tunnels for beam operation up to 40 MeV, 100 kW

Niowave Airport Facility

- Occupancy Jan 2015
- 24/7 operation
- Isotopes, x-rays, etc.
- Lansing International Airport
 - Foreign Trade Zone

- First domestic production of Mo-99 from U

 Planned for Summer 2015
- Large scale Mo-99 production & distribution
 - Planned for 2016-17