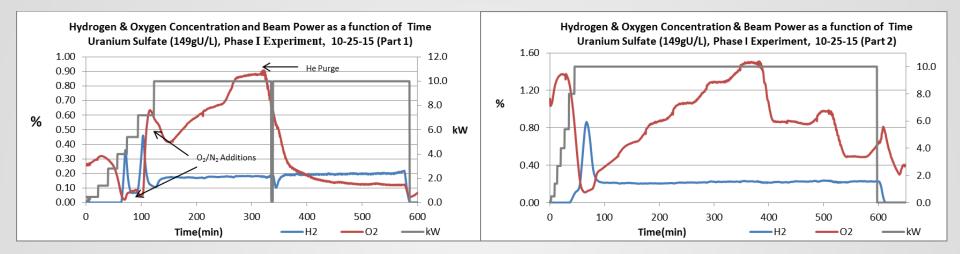
ACCELERATOR-PATHWAY FOR ⁹⁹MO PRODUCTION WITHOUT HIGHLY ENRICHED URANIUM

SERGEY CHEMERISOV

Mo-99 Topical Meeting St. Louis, Missouri September 14, 2016

OUTLINE

- Support for SHINE Medical Technologies
 - Phase 1 mini- and micro-SHINE experiments gas generation results
 - Transition to mini-SHINE phase 2 experiments
- Support for NorthStar Medical Isotopes
 - Beamline design
 - Beamline configuration
 - Beam diagnostic
 - High power targets
 - Van de Graaff testing for product development

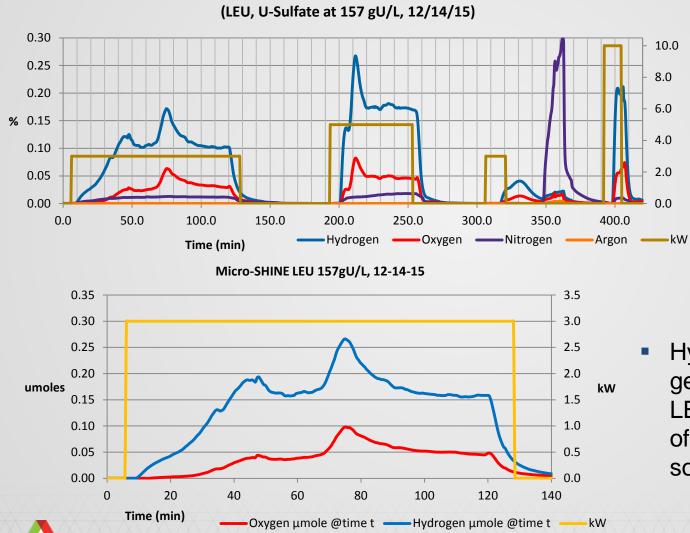

SHINE SUPPORT: ARGONNE MINI-SHINE EXPERIMENT

- Argonne's mini-SHINE experiment use fissioning of uranyl-sulfate solutions using photoneutron target at Argonne electron linac to produce Mo-99, this experiment is designed to:
 - Study the effects of fission on target-solution chemistry and radiolytic off-gas generation
 - Demonstrate the recovery and purification of Mo-99 from an irradiated target solution
 - Produce Mo-99 to ship to potential Tc-99m generator manufacturer partners Phase 1 (completed January 2016)
 - Linac was operated at 35 MeV and 10 kW beam power on the Ta target
 - 5 L solution (140 g-U/L) were irradiated with neutrons generated through gamma-n reaction in tantalum target
 - Maximum solution fission power was \leq 0.05 kW/L
 - Up to 2 Ci of Mo-99 was produced per run

Phase 2

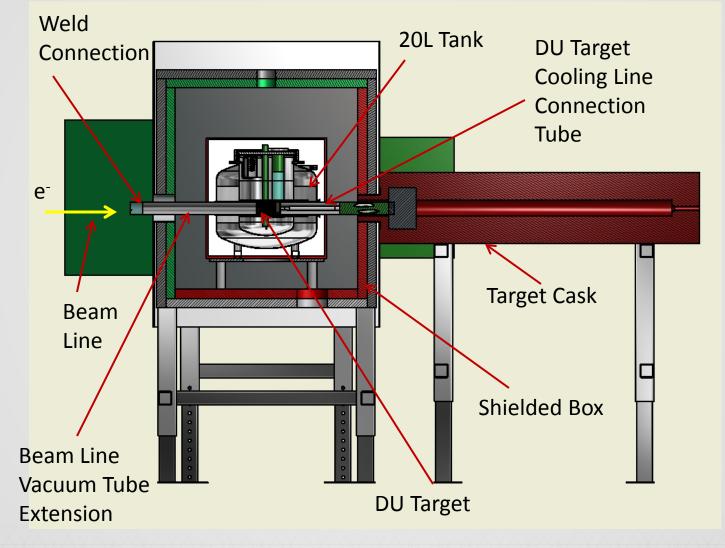
- Experiment will be conducted at 35 MeV beam energy and up to 20 kW beam power
- 20 L solution will be irradiated with neutrons generated in a depleted-uranium (DU) target (Zr clad DU discs were manufactured at LANL)
- Maximum solution fission power will be \leq 0.5 kW/L
- Up to 20 Ci of Mo-99 will be produced

GAS GENERATION IN MINI-SHINE EXPERIMENT

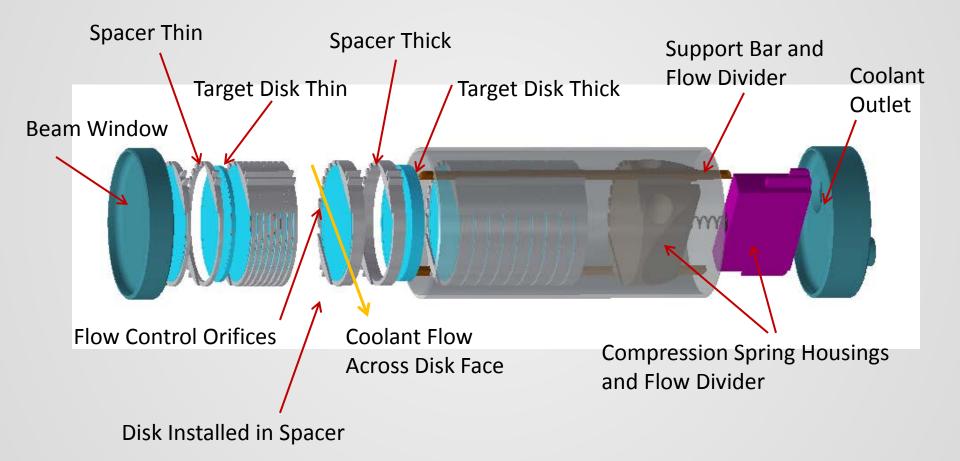

 1% safety limit for maximum hydrogen gas concentration in head space of mini-SHINE experiment has significantly constrained gas generation measurements. Oxygen addition had to start 30-60 min into irradiation. Hydrogen concentration reached steady-state in ~100 min. After that time no addition of oxygen to the headspace was necessary.

GAS GENERATION IN MICRO-SHINE EXPERIMENTS

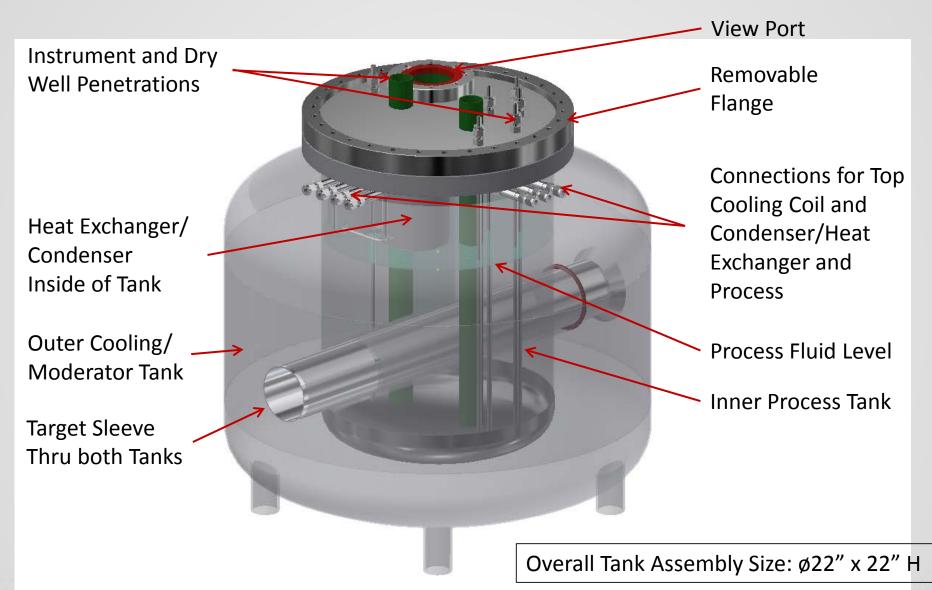
- Small samples ~2 ml were irradiated in dry tubes of the mini-SHINE experimental setup
- Gas generation rates were measured using flow through approach, which kept concentration of hydrogen below 1%
- Irradiation of the samples with different enrichments allowed separation of gas generation due to fission and photon radiolysis
- Fraction of gas production due to fission fragment radiolysis in LEU solution to total gas production is ~67%


GAS GENERATION IN MICRO-SHINE EXPERIMENTS LEU

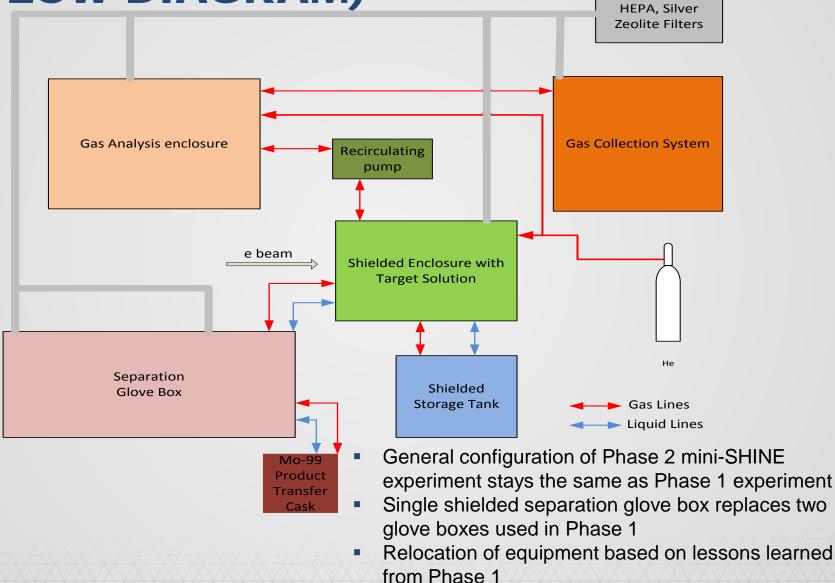
LINAC Microshine Gas Measurements


 Hydrogen generation rate for LEU ~75 mole/kWh of fission power in solution

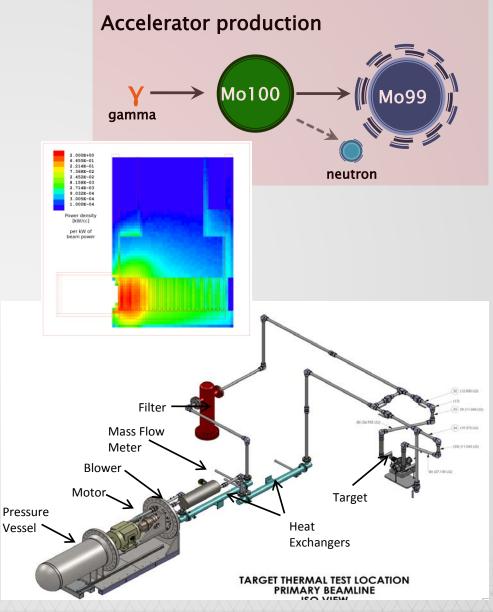
PHASE 2 MINI-SHINE IRRADIATION SETUP



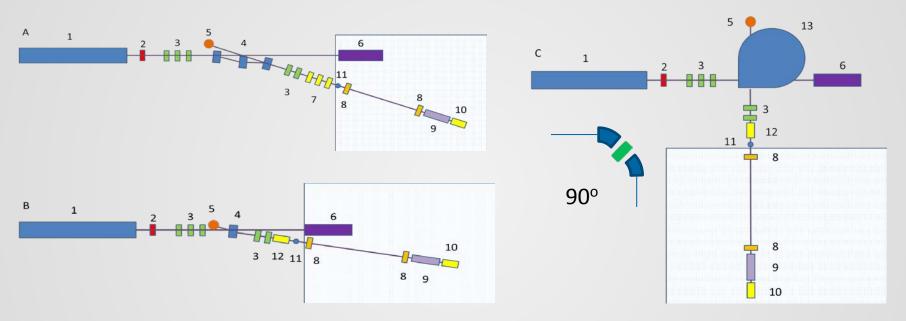
DU TARGET DESIGN



OVERVIEW OF 20 L PROCESS TANK DESIGN



MINI-SHINE PHASE 2 EXPERIMENT (FLOW DIAGRAM)



SUPPORT FOR NORTHSTAR MEDICALRADIOISOTOPESAccelerator production

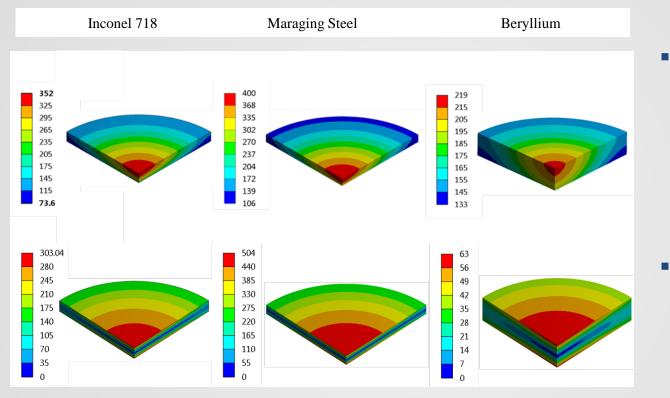
- Major challenges
 - Efficient delivery of high power electron beam to the target
 - Stability of the beam position on the target
 - High power beam tune-up and diagnostic
 - Cooling of high power density target

BEAM LINE CONFIGURATIONS FOR ACCELERATOR BASED PRODUCTION FACILITY 270°

 Beam line elements: 1-linac, 2-fast acting gate valve, 3-quad magnets, 4bending magnets, 5-OTR and IR cameras, 6-Beam stop, 7-non-linear beam optics, 8-beam position monitors, 9-collimator, 10-target, 11-gate valve vacuum sensor, 12-rastering magnet, 13-270° magnet

BEAM LINE COMPONENTS DEVELOPMENT AND TESTING

- 20° two bend achromatic magnet system was designed and will be installed and tested in October 2016.
- Beam position monitors were installed and tested during multiple production runs.
 Software for control and data acquisition was developed.
- Performance of the fast acting beam valve system was evaluated in a facility relevant configuration.
- High power collimator and beam stop was designed and fabricated. Those components will be tested in September 2016.



MATERIALS SELECTION FOR HIGH POWER TARGET

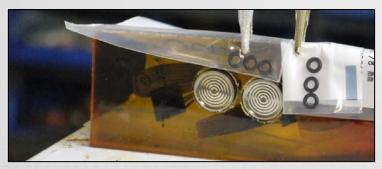
Material	Density (Kg/m³)	Thermal Conductivity (W/m-°C)	Maximum Stress (MPa)	Minimum Window Thickness (mm)	Maximum Temperature (°C)	Figure of Merit (FOM)
INCONEL 718	8,221	17.3	456	1.15	403	1
Hastelloy X	8,221	26.0				*Disqualified
INCONEL 706	8,055	22.5	75	2.87	1,280	2.45
Waspaloy	8,193	17.3	357	1.30	481	1.13
Rene 41	8,249	17.3	507	1.09	388	0.96
L-605 Haynes Alloy 25	9,134	19.0				*Disqualified
316 SS	7,806	22.5				*Disqualified
250 Maraging Steel	7,916	29.4	706	0.93	269	0.78
AerMet 100	7,889	31.2	793	0.87	249	0.73
2024-T81 Aluminum .	2,768	173.1				*Disqualified
6061-T6 Aluminum .	2,713	173.1				*Disqualified
Titanium alloy AMS 4910	4,484	13.9	175	1.88	497	0.90
Beryllium Standard grade	1,855	138.5	147	1.96	131	0.39
Magnesium alloy	1,800	77.0				*Disqualified

 $FOM = \frac{\rho t}{\rho_I t_I}$ ρ = density of material to be evaluated t = minimumacceptable thickness of material to be evaluated ρ_{l} = density of **INCONEL 718** t_{i} = minimum acceptable thickness of INCONEL 718 FOM = Factor of Merit

FINAL MATERIAL CANDIDATES FOR TARGET WINDOW

- Results of the thermal modeling are shown here as plots of temperature (°C)
- Stress due to pressure loading plotted as stress intensity in MPa

Material	Maximum Beam Power (kW)			
Inconel 718	18			
Beryllium	40			
250 Maraging Steel	39			



VAN DE GRAAFF (VDG) ACCELERATOR

Testing of radiation stability of process equipment

- Radiation damage tests using the VDG
- Effects of photon radiation on HDPE bottles containing K₂MoO₄ in 6 M KOH
- Zero to 6.5 MRad shown (up to twice calculated dose expected)
- Testing of RadioGenix generator components

SUMMARY

- Scope of phase 1 mini-SHINE experiment was completed in January 2016.
- Gas generation rates were measured in phase 1 micro-SHINE experiments and results are in good agreement with literature data.
- Installation of phase 2 mini-SHINE equipment is nearly complete. Commissioning of the phase 2 mini-SHINE experimental setup will start in September 2016.
- Different configurations of the beam line were evaluated. 90° or 270° configuration is proposed for the production facility.
- Beam position monitors and the fast acting gate valve system were tested in plant relevant conditions.
- High power beam dump and collimator were designed and built and will be tested in September 2016.
- Components of the RadioGenix system were tested at Van de Graaff accelerator. Results of those tests are helping NorthStar in developing a more robust system and in the FDA approval process.

ACKNOWLEDGEMENTS

- George Vandergrift
- Mandy Youker
- Peter Tkac
- John Krebs
- Mike Kalensky
- David Rotsch
- Alex Brown
- Andy Hebden
- Thad Heltemes
- Dominque Stepinski
- Jim Byrnes
- Jim Jerden
- Roman Gromov
- Chuck Jonah
- Vakho Makarashvili
- Brad Micklich
- Lohman Hafenrichter
- Kurt Alford

- Ken Wesolowski
- Kevin Quigley
- Jim Bailey
- Momen Abdul
- Tom Brossard
- This work is done in collaboration with LANL and ORNL
 - The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S.
 Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.
 - Work supported by the U.S. Department of Energy, National Nuclear Security Administration's (NNSA's)
 Office of Defense Nuclear Nonproliferation, under Contract DE-AC02-06CH11357.