

Measurement of Trace Alpha-Emitting Actinide Contaminants in Molybdenum-99

CHUCK SODERQUIST, LORI DARNELL, JAMIE WEAVER

Pacific Northwest National Laboratory

2016 Topical Meeting on Molybdenum-99 Technological Development

Proudly Operated by Battelle Since 1965

Introduction and Background

- ⁹⁹Mo is made by fission of ²³⁵U, accompanied by a much larger amount of other fission products. A target of ²³⁵U is placed in a reactor and irradiated with neutrons to fission some of the ²³⁵U. About 6% of the fissions make ⁹⁹Mo. After irradiation, the target is removed from the reactor and chemically processed to recover the ⁹⁹Mo alone, without any other fission products. Process has been in use for decades.
- The ⁹⁹Mo must be quite pure to be used as a pharmaceutical. Extensive chemical separations are used to make a very pure product.

Proudly Operated by Baffelle Since 1965

- Highly enriched ²³⁵U makes an excellent target, but ²³⁵U constitutes a proliferation risk.
- Lower enrichment uranium also works well. 20% ²³⁵U, 80% ²³⁸U makes ⁹⁹Mo, but will not work in a weapon. Avoids proliferation risk.
- The much larger amount of ²³⁸U in the target produces new contaminants. Neutron capture in ²³⁸U makes ²³⁹Pu, which has high radiotoxicity.

- The switch from high- to low-enriched U carries new risk that plutonium could get into the product.
- ⁹⁹Mo product needs to be analyzed to prove the absence of ²³⁹Pu.
- Specification for maximum allowable alpha contamination is 1 part alpha in 10⁹ parts ⁹⁹Mo, eight days after production.
- Extremely high beta-gamma activity of ⁹⁹Mo precludes direct measurement of alpha emitters by alpha spectrometry.
- Need a method for measuring and identifying the alpha emitters in the ⁹⁹Mo.

Analytes are ²³⁹Pu, ²³⁴U and ²³⁵U (from the target), and ²⁴¹Am (from neutron activation of ²³⁹Pu). No other alpha emitters have credible chance being in the ⁹⁹Mo.

- Can't measure U, Pu, Am by alpha spectrometry in the presence of highactivity ⁹⁹Mo. High beta activity distorts the alpha spectra.
- Must chemically separate U, Pu, Am from the ⁹⁹Mo before measurement.
- Chemical forms of ⁹⁹Mo and ^{99m}Tc are MoO₄²⁻ and TcO₄⁻. Stable and soluble under basic conditions. ⁹⁹Mo is less soluble under acidic conditions.
- U, Pu, and Am are quite insoluble under basic conditions. Soluble in acidic solution.
- This makes possible a fast, simple separation of actinide elements (U, Pu, Am) from ⁹⁹Mo solution.

Analytical Procedure for Measurement of Alpha-Emitting Actinides

- 1. Measure ⁹⁹Mo sample into centrifuge tube.
- 2. Acidify the sample with nitric acid to assure that actinides are in solution.
- 3. Add 50 µg Gd to serve as carrier.
- Add large excess of ammonium hydroxide. Precipitate of Gd(OH)₃ forms, and carries with it any actinides that might be present. ⁹⁹Mo and ^{99m}Tc stay in solution.

$$\mathrm{Gd}^{3+}_{(\mathrm{aq})} + \mathrm{NH}_{4}\mathrm{OH} \rightarrow \mathrm{Gd}(\mathrm{OH})_{3(\mathrm{s})} \downarrow$$

(All oxidation states of plutonium are insoluble under these conditions. Oxidation state does not need to be controlled.)

Analytical procedure, continued

Proudly Operated by Battelle Since 1965

Colorless suspension of $Gd(OH)_3$ in NH_4OH . 50 µg of Gd is nearly impossible to see.

5. Pass the suspension of $Gd(OH)_3$ in ⁹⁹Mo solution through a membrane filter. The $Gd(OH)_3$ stops at the filter, but the high-activity ⁹⁹Mo passes through.

Suspension of $Gd(OH)_3$ is passed through a membrane filter. Actual ⁹⁹Mo sample has high dose rate. Shielding is not shown.

Analysis of Alpha Emitters in Mo-99

Proudly Operated by Battelle Since 1965

50 µg of Gd precipitated as hydroxide and loaded onto a 2.5-cm membrane filter makes a suitable source for alpha spectrometry. Spectral resolution is adequate to resolve the alpha emitters.

Finished alpha spectrometry counting mounts

Alpha spectrometry counting system

A few important details previously left out for clarity:

- Special equipment is required. The work area needs lead shielding to cut exposure to the analyst. The ⁹⁹Mo is too hot to directly handle.
- Actinide elements are typically measured using a tracer. The tracer is added at the start of the analysis and shows up in the alpha spectrum as a second peak.
- The precipitation needs to be repeated once in order to reduce the ⁹⁹Mo activity sufficiently. Dissolve the first precipitate in dilute nitric acid, then re-precipitate it with fresh ammonium hydroxide as before. Pass the suspension though a clean membrane filter.

In the alpha spectra shown in the next several slides, some used highactivity ⁹⁹Mo and others used a chemically identical solution, but without actual ⁹⁹Mo. The alpha spectra are indistinguishable with or without ⁹⁹Mo.

Hot ⁹⁹Mo measurements used equipment with shielding. Hot ⁹⁹Mo sample must be handled with extension tools. No direct handling is possible.

Any actinide element present in the sample will appear in the alpha spectrum. If a uranium-contaminated sample is analyzed for plutonium, uranium will appear in the plutonium spectrum.

Plutonium Alpha Spectrum

Plutonium Alpha Spectrum

Uranium Alpha Spectrum using this method

Proudly Operated by Battelle Since 1965

Americium Alpha Spectrum

Americium spectrum with tracer

September 27, 2016 **15**

Summary

Method is fast. Sample set consists of

- Sample
- Duplicate sample
- Spiked sample (for quality control)
- Blank sample (for quality control)
- Requires 2-3 hours lab time
- Requires 12 hours counting time
- 24-hour turnaround easily obtained
- Sensitivity easily measures 1 part alpha in 10⁹ parts ⁹⁹Mo
- Method identifies the alpha emitters in the sample
- Alpha spectrum looks the same with or without actual ⁹⁹Mo. High betagamma activity does not measurably affect the final alpha result.

More Alpha Spectra

Heavy uranium contamination spiked into a plutonium measurement. Spectrum shows duplicate analyses superimposed.

More Alpha Spectra

Heavy ²⁴¹Am contamination spiked into plutonium measurement. Duplicate analyses shown superimposed.