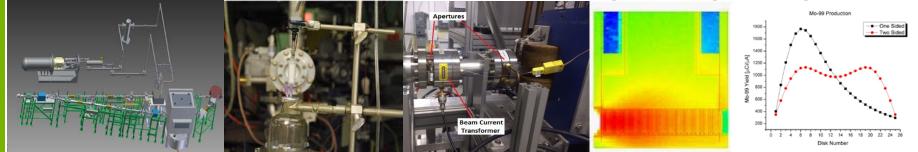
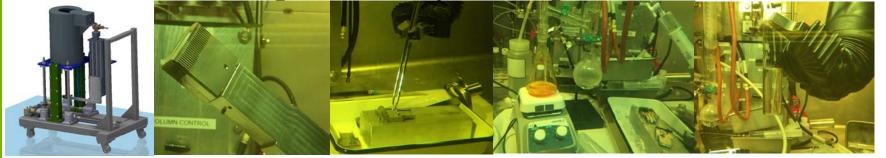
2018 MO99 TOPICAL MEETING

FY18 UPDATE ON LARGE-SCALE DISSOLUTION AND RECYCLE PROCESSES FOR NEUTRON CAPTURE, AND ACCELERATOR DRIVEN PRODUCTION OF MO-99



PETER TKAC


Peter Kozak, David A. Rotsch, Sergey D. Chemerisov, James P. Byrnes, M. Alex Brown, James Bailey, Kenneth A. Wesolowski, Kurt Alford, George F. Vandegrift

ARGONNE'S SUPPORT TO NORTHSTAR

Irradiations, radiation dose, beam transport, shielding and target design, MCNPX

Post-irradiation handling and hot-cell processing

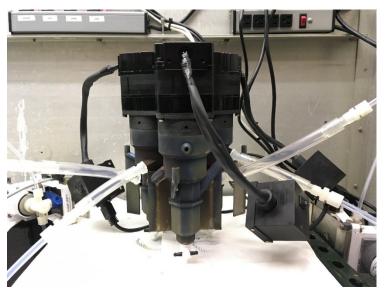
Chemical processes R&D

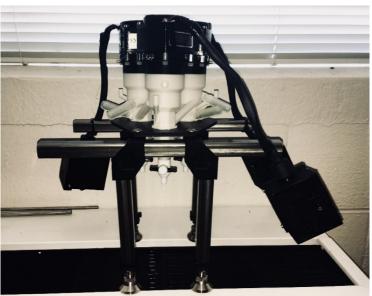
CENTRIFUGAL CONTACTOR UPDATE

Acrylic

Polypropylene

Inconel 625




Rotor coupling

3D-PRINTED INCONEL & POLYPROPYLENE

Inconel 625

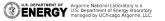
	Cr	Мо	Co	Nb+Ta	AI	Ti	С	Fe	Mn	Si	Р	S	Ni
Min	20	8		3.15				-	-				Balance
Max	23	10	1	4.15	.4	.4	.1	5	.5	.5	.015	.015	Balance

Elevated concentrations of: Ni, Cr, Nb, Si, Co in raffinate

Inconel – not suitable due to substantial corrosion

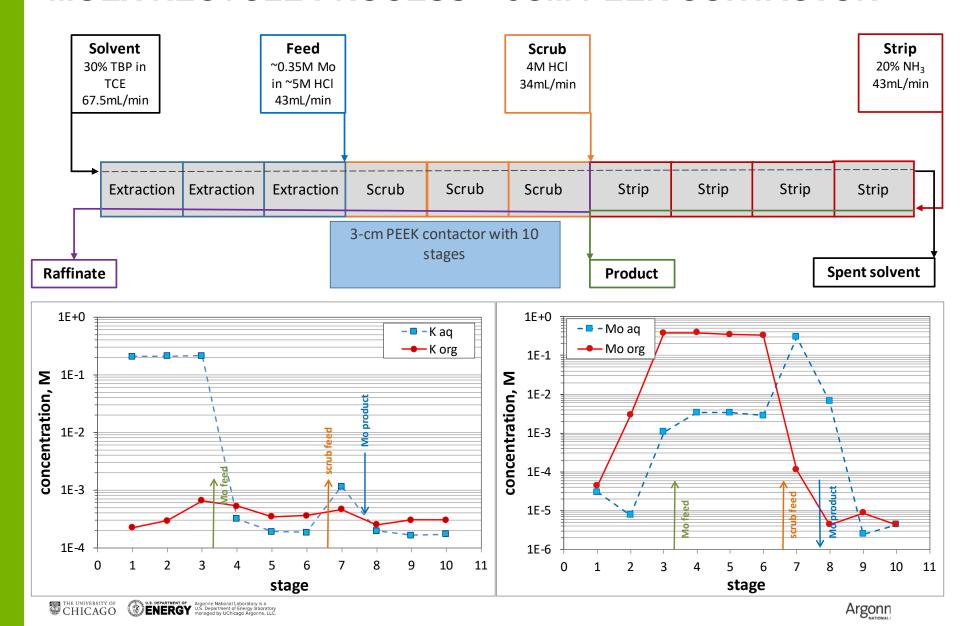
PP – not suitable due to rotor failure, too soft

3D-PRINTED HIGH DENSITY ACRYLIC



High density acrylic – good with some effects, cheap

PEEK – robust and chemically compatible



MOEX RECYCLE PROCESS – 3CM PEEK CONTACTOR

MOEX RECYCLE PROCESS – 3CM PEEK CONTACTOR

3-cm vs. 2-cm: ~3.5x faster throughput

12L of Mo feed at ~0.33M Mo is ~400g of Mo (~1kg of KCl removed): 4.5hrs of run time

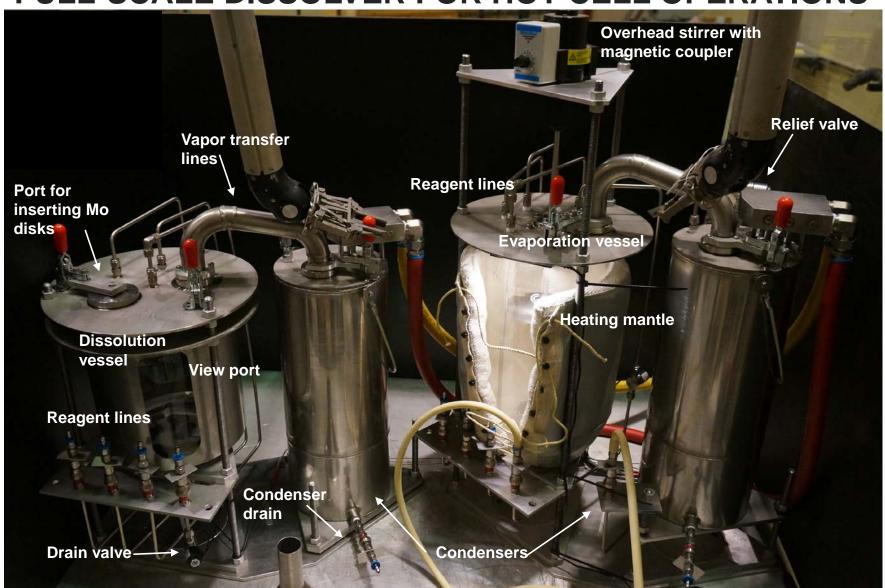
More dilute Mo solution: 4-5cm contactor needed

Extraction:

Mo raffinate: 0.015% of Mo possibly due to minor phase carryover, ~100% of K

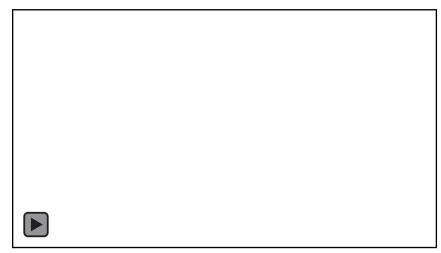
2nd stage: Mo: <DL, ~100% of K

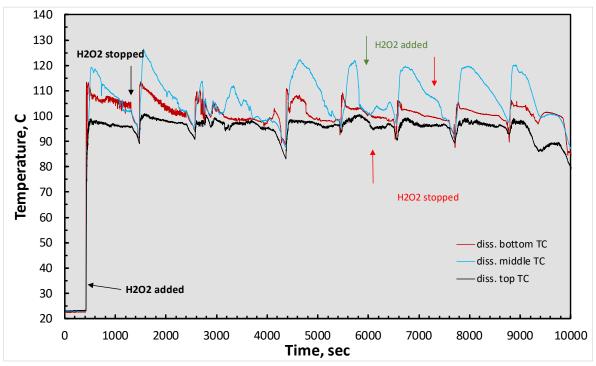
Strip:

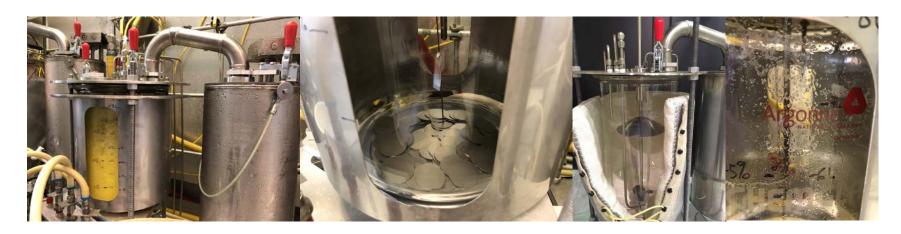

9th and 10th stage aqueous phase: Mo: <DL

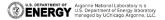
TBP recycled: Mo: <DL

PEEK has excellent durability, easy to machine, potential for 3D printing




- Dissolution of up to 600g of Mo
- Vigorous and exothermic reaction
- ~1L of water condensed in 15min ~2.6kW
- Optimized processing time from 9hrs (300g FY15) to ~2.5-4hrs (600g)





LARGE-SCALE DISSOLUTION RESULTS

disks mass, g	Mo disks	peroxide manufacturer	50% peroxide consumed, L	water cond. from diss., L	dissolution time, min	evaporation, min	water cond. from evap., L	filtration, min	total, min	diss. rate, g/min	Total processing g/min
302.00	NS 26x1	Acros Organics	3.75	2.14	72	60	0.5	10	150	4.19	2.01
586.2	NS 26x1	Acros Organics	7.2	4.81	84	30	2.4	20	150	6.98	3.91
599.5	NS 26x0.5	Fisher Chemical	7.6	5.26	89	10	0.36	30	150	6.74	4.00
592.6	NS 26x1	Fisher Chemical	7.4	4.88	103	100*	0.20	4	267	5.75	2.22
600.6	NS 26x1	Fisher Chemical	9.05	5.93	120	24	1.06	10	165	5.01	3.64
600.8	NS 26x1	Fisher Chemical	8.9	6.11	106	9	0.80	10	128	5.67	4.69
599	ORNL 29x1	Sigma Aldrich	9.55	5.8	150	76	1.25	20	246	3.99	1.23
601.8	NS 26x1	Sigma Aldrich	11.5	5.62	176	120	1.78	17	313	3.42	1.87
598.8	ORNL 29x0.5	Sigma Aldrich	8.96	5.18	207	97	1.32	26	330	2.89	1.82
604.6	NS 26x1	Sigma Aldrich	7.4	4.86	156	70	1.05	45	266	3.88	2.27
600.9	NS 26x1	Sigma Aldrich	7.73	4.63	190	12	1.38	24	232	3.16	2.59
600.7	NS 26x1	Sigma Aldrich	8.41	5.08	189	10	1.37	3	210	3.18	2.86

Peroxide used: 14.1 ± 2 mL/g of Mo for 600g batches

Dissolution water condensed: 62 ± 6% of peroxide consumed

Dissolution rates for 600g batches (dissolution only):

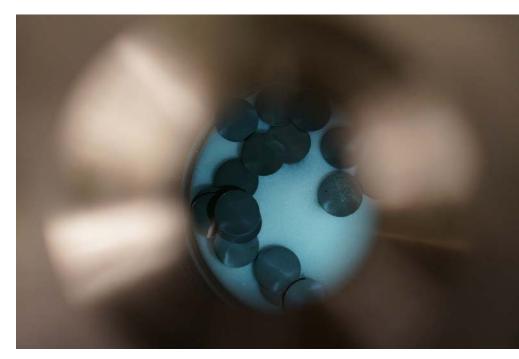
Across Organics: 7g/min

■ Fisher Chemical: 5.8 ± 0.7 g/min

■ Sigma Aldrich: 3.4 ± 0.4 g/min

HYDROGEN PEROXIDE SUPPLIERS - DIFFERENCES

	Fisher Chemical	Sigma Aldrich	Across Organics
part #	H341-500	516813-4L	AC302860025
	ppm	ppm	ppm
K	4.84	6.10	<57.2
Na	16.4	85.0	87.2
Р	< 11.2	81.0	83.4
Ca	16.4	44.0	<146
Ti	0.071	0.071	0.100
Cr	< 0.11	< 0.14	0.12
Mn	0.037	0.044	0.006
Ni	< 0.036	0.125	0.037
Cu	0.023	0.023	0.016
Zn	0.214	0.483	0.061
Sn	6.65	18.8	0.31



ACKNOWLEDGEMENT

Stan Wiedmeyer

Bill Brown

Yifen Tsai

FUNDING

Work supported by the U.S. Department of Energy, National Nuclear Security Administration's (NNSA's) Office of Defense Nuclear Nonproliferation, under Contract DE-AC02-06CH11357.

Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

