

Irradiation Activities at ORNL for Supporting R&D on ⁹⁹Mo Production

Nesrin Cetiner

Chris Bryan

2018 Mo-99 Topical Meeting Sept 23-26, 2018

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

The High Flux Isotope Reactor (HFIR)

- Pressurized (470 psi), flux-trap type, light water cooled and moderated
- HEU fuel (U₃O₈ dispersed in aluminum) with involute plate geometry
- Operates at a steady state 85 MW
- Experiments in flux trap or beryllium reflector
- 24 days/cycle, 6—7 cycles/year

- Thermal flux of 2.1 x 10¹⁵ n/cm²/s
- Fast flux of 1.1 x 10¹⁵ n/cm²/s

Picture of targets in flux trap: https://www.comsol.com/blogs/converting-high-flux-isotope-reactor-leu-fuel/

Flux Trap Experiments—Rabbits and Targets

- <u>High fast flux</u>: 1.1×10¹⁵ n/cm²/s
- <u>High thermal flux</u>: 2.1×10¹⁵ n/cm²/s
- <u>Small diameter</u>: Ø9.5—11.3 mm
- 12.6 dpa/CY (steel)
- ~150 available rabbit positions, <u>none instrumented</u>
- ~15 target positions, <u>2 instrumented</u>
- Design temperature (60—1200°C)
- <u>Cost</u>: \$30—\$400K

target rod holder

CAK RIDGE

Picture of targets in flux trap: https://www.comsol.com/blogs/convertinghigh-flux-isotope-reactor-leu-fuel/

Irradiation Design and Methodology

- Mechanical design (Creo)
 - Detailed holders with cutouts for specimens and instrumentation
 - Welded and hermetically sealed containment vehicles
- Neutronics analysis (MCNP + ORIGEN)
 - Neutron/gamma heating rates
 - Fuel burnup, displacement damage
 - Neutron activation + decay heating

Thermal analysis (ANSYS)

- Multi-body heat transfer

CAK RIDGE National Laboratory

- Thermal/mechanical coupling
- Small gas gaps that open or close as a result of swelling, creep, thermal expansion, etc., used to control temperature

Neutronics Estimate Heat Generation Rates

- Heat generation rates comprise more than just gamma heating
- The axial profile is strong but relatively independent of material (D_Relative contributions to the total heat generation rate (W/g) 45%) Vanadium Graphite
- The radial profile in the flux trap is weaker but material dependent (~10–15%)
- The radial profile in the reflector can be large (possibly by orders of magnitude)

	Vanadium	Graphite
Core fission neutrons	0.3 (1%)	3.3 (11%)
Core fission photons	22.5 (48%)	17.7 (59%)
Core fission product photons	11.8 (25%)	8.8 (30%)
Local B decay	12.1 (26%)	_

Thermal Modeling

- Extremely high power density in HFIR core
 - High neutron and gamma heating rates: 30 W/g to >100 W/g in flux trap
 - Large spatial gradients in temperature and dose without proper design
- Temperature controlled by varying fill gas conductivity and size of gas gaps
 - Fill gas is usually He, Ne, Ar, or a mixture of these gases
 - Gaps on the order of micrometer to millimeter
 - Thermal/structural coupling to account for thermal expansion and/or swelling

Experiment Assembly

Materials Irradiations for SHINE Medical Technologies

- SHINE Medical Technologies is developing a accelerator-driven subcritical assembly for the domestic production of molybdenum-99 and other isotopes for medical diagnosis and treatments
- The subcritical design has a number of materials challenges that are unique and require evaluation
- To support this effort, study of Zircaloy-4 and hydrided Zircaloy-4 under different experimental conditions, including neutron irradiation at temperatures of 60°C and 100°C, has been initiated

Irradiation Plan

Material Type	Design Temperature	Hydrogen Level	Desired Fluence (n/cm^2)	Irradiation Facility at HFIR	Irradiation Duration	Capsule Design Requirements
Zircaloy-4 Base 60°C Metal	60°C	 0 ppm 250 ppm 	1.00e20	HT-5	~1.3 days	Perforated housing, in contact with
	• 500 ppm	1.00e21	HT-5	~13 days	reactor coolant (~53°C)	
Zircaloy-4 TIG 100°C Welded	• 0 ppm	1.00e20	HT-5	~1.3 days		
		• 250 ppm • 500 ppm	1.00e21	HT-5	~13 days	Sealed capsule, tilled with mixed gas

Capsule Mechanical Design

Heat Generation Rate Calculations

- The MCNP code is used to provide a flux spectrum and to estimate the prompt fission and fission product decay portions of the total heat
- The SCALE code system is used to estimate the decay heat portion of the total heat
- Nuclear heating in HFIR is dominated by photon absorption in most materials
 - Heat generation due to photon absorption is dependent on the atomic number of the absorbing element and the magnitude and spectrum of the capture gammas released as a result of neutron absorption
- Peak heat generation rates of Zircaloy-4, SiC, and Al6061 are calculated for the hydraulic tube irradiation facility in the HFIR flux trap

 In the absence of very strong absorbers, the flux in the flux trap is generally flat and radially symmetric

	BOC		EOC		Design				
Case	PTP	TRRH	HT	PTP	TRRH	HT	PTP	TRRH	HT
Zirc4*/ AI-6061	55.6	54.7	53.4	51.3	49.9	48.8	53.4	52.3	51.1
FeCrAl/Molybdenum	35.2	34.4	33.2	33.6	32.6	32.0	34.4	33.5	32.6
Inconel600/Molybdenum	37.7	36.5	35.9	35.7	34.8	34.0	36.7	35.7	34.9
Zirc4/Molybdenum	47.4	46.2	44.4	44.8	44.0	42.5	46.1	45.1	43.4

*Results for Zirc4 and Zirc4 + 250ppm H in the explicit model are statistically equivalent.

Thermal Analysis Results of 100°C Capsule

12

- 68% helium, 32% argon mixed gas
- ΔT across the gauge section is $\sim 10^{\circ}C$
- Zircaloy-4 thermal conductivity 13.4W/mC
- Zircaloy-4 density 6550 kg/m³

Total heat flux

Irradiation Design and Analysis for Coqui Pharmaceutical

Neutronics calculations

- Scoping calculations to determine the proper enrichment
- Heat generation rates
- Fission gas inventory
- Burnup, decay heat
- Depletion
- Activity, isotopic composition of the target
- Specific activity
- Mo-99 yield

CAK RIDGE National Laboratory

- Safety basis calculations
 - Steady-state normal operation—at a full power of 87.6 MW
 - Steady-state with flow blockage —at full power and 50% of the full flow
 - Steady-state at 130% power (110.5 MW) and 100% flow
 - Loss of offsite power (LOOP)
 - Small break loss-of-coolant accident (SBLOCA)

- Preliminary design of the irradiation rig
 - Flow calculation, determining orifice for a proper pressure drop
 - Flow test
 - Thermal and structural analysis

Preliminary Design of the LVXF Irradiation Rig

Miniature Target Test Capsule for Hydraulic tube Irradiations

Irradiations for BWXT

CAK RI

- ~24 g moly disks
- ~1700 W total capsule heat load
- Max temp 1616°C under the Limiting Condition Scenario (LCS) at 130% power

Questions?

Contact: Nesrin O. Cetiner cetinerno@ornl.gov

Acknowledgments Thanks to Charles Daily, Jorge Navarro, Kurt Smith, Chinthaka Silva, and Lauren Garrison for their contributions

HFIR Experiment Locations

CAK RIDGE

19

NOTE: Facility diameters and volumes represent total available. Actual specimen volumes will be less.