#### **MO-99 TOPICAL MEETING**

### ACCELERATOR-BASED PRODUCTION OF MO-99: PHOTONUCLEAR APPROACH



#### SERGEY CHEMERISOV

Experimental Operations and Facilities Division

PETER TKAC, ROMAN GROMOV, JERRY NOLEN, JEONGSEOG SONG, CHARLES JONAH, AND GEORGE VANDEGRIFT



September 26, 2018 Knoxville, TN Mo-99 Topical meeting

# OUTLINE

- Introduction
- Target design and bremsstrahlung converter
- Window material selection considerations
- Side reaction study for enriched Mo-100
- Facility beamline and vault design



### **ARGONNE'S DEVELOPMENT OF ACCELERATOR-BASED PRODUCTION OF MO-99**

Irradiations, radiation dose, beam transport, shielding and target design, MCNPX



### Post-irradiation handling and hot-cell processing



### **Chemical processes R&D**



Argonne 🕰

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

## PROOF OF CONCEPT DEMONSTRATIONS FOR ELECTRON ACCELERATOR PRODUCTION OF <sup>99</sup>MO

- Under the direction of the NNSA, ANL and LANL are partnering with NorthStar Medical Radioisotpes. to demonstrate and develop accelerator production of <sup>99</sup>Mo through the <sup>100</sup>Mo(γ,n)<sup>99</sup>Mo reaction.
  - The threshold for the reaction is 9 MeV.
  - The peak cross section is 150 mb at 14.5 MeV.
- High-energy photons are created with a high-power electron beam through bremsstrahlung.
- Enriched <sup>100</sup>Mo should be commercially available for \$500–1000 per gram for kg quantities.



## CLOSED LOOP GASEOUS HELIUM COOLING SYSTEM LAYOUT AT ARGONNE





## **TARGET DESIGN**



First 12 mm target



29 mm target



29 mm insert to hold 12 mm disks





CHICAGO



## CONVERTER STUDY FOR <sup>99</sup>MO TARGET

Would use of the high-Z (e.g., Ta) converter in front of the moly target increase the <sup>99</sup>Mo yield by increasing the conversion of electron energy to photons?







## CONVERTER STUDY FOR <sup>99</sup>MO TARGET

Electron beam (35 MeV) incident from the left



Argonne 合

# **MATERIALS SELECTION FOR HIGH POWER TARGET**

| Material                                                                                                                       | Density<br>(Kg/m³) | Thermal<br>Conductivit<br>y | Maximum<br>Stress<br>(MPa) | Minimum<br>Window<br>Thicknes | Maximum<br>Temperatur<br>e | Figure of<br>Merit<br>(FOM) |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|----------------------------|-------------------------------|----------------------------|-----------------------------|
|                                                                                                                                |                    | (W/m-°C)                    |                            | s<br>(mm)                     | (°C)                       |                             |
| INCONEL 718                                                                                                                    | 8,221              | 17.3                        | 456                        | 1.15                          | 403                        | 1                           |
| Hastelloy X                                                                                                                    | 8,221              | 26.0                        |                            |                               |                            | *Disqualified               |
| INCONEL 706                                                                                                                    | 8,055              | 22.5                        | 75                         | 2.87                          | 1,280                      | 2.45                        |
| Waspaloy                                                                                                                       | 8,193              | 17.3                        | 357                        | 1.30                          | 481                        | 1.13                        |
| Rene 41                                                                                                                        | 8,249              | 17.3                        | 507                        | 1.09                          | 388                        | 0.96                        |
| L-605<br>Haynes Alloy 25                                                                                                       | 9,134              | 19.0                        |                            |                               |                            | *Disqualified               |
| 316 SS                                                                                                                         | 7,806              | 22.5                        |                            |                               |                            | *Disqualified               |
| 250 Maraging<br>Steel                                                                                                          | 7,916              | 29.4                        | 706                        | 0.93                          | 269                        | 0.78                        |
| AerMet 100                                                                                                                     | 7,889              | 31.2                        | 793                        | 0.87                          | 249                        | 0.73                        |
| 2024-T81<br>Aluminum <del>.</del>                                                                                              | 2,768              | 173.1                       |                            |                               |                            | *Disqualified               |
| 6061-T6<br>Aluminum <del>.</del>                                                                                               | 2,713              | 173.1                       |                            |                               |                            | *Disqualified               |
| Titanium alloy<br>AMS 4910                                                                                                     | 4,484              | 13.9                        | 175                        | 1.88                          | 497                        | 0.90                        |
| Beryllium<br>Standard grade                                                                                                    | 1,855              | 138.5                       | 147                        | 1.96                          | 131                        | 0.39                        |
| Magnesium<br>alloy                                                                                                             | 1,800              | 77.0                        |                            |                               |                            | *Disqualified               |
| THE UNIVERSITY OF CHICAGO US. Department of Energy is a laboratory is a U.S. Department of Energy is boratory management. Ltc. |                    |                             |                            |                               |                            |                             |

 $FOM = \frac{\rho t}{\rho_I t_I}$  $\rho$  = density of material to be evaluated t = minimumacceptable thickness of material to be evaluated  $\rho_l$  = density of **INCONEL 718**  $t_l = minimum$ acceptable thickness of **INCONEL 718** FOM = Factor ofMerit



# FINAL CANDIDATES AND CALCULATIONS



Results of the thermal model are shown here as plots of temperature (°C)

Stress due to

pressure loading.

Plotted as stress

| Material     | Maximum Beam Power (kW) |
|--------------|-------------------------|
| Inconel 718  | 18                      |
| Beryllium    | 40                      |
| 250 Maraging | 45                      |
| Steel        |                         |

intensity in MPa.

THE UNIVERSITY OF CHICAGO US DEPARTMENT OF Argonne National Laboratory is a US. Department of Energy laboratory is a managed by UCHICAGO Argonne. LLC



## **TESTING WINDOW MATERIALS CANDIDATES**





| Parameter                    | IN 718       | MS            | Be            |
|------------------------------|--------------|---------------|---------------|
| Gauge Length, in. (mm)       | 0.300 (7.62) | 0.300 (7.62)  | 0.300 (7.62)  |
| Gauge Width, in. (mm)        | 0.060        | 0.060 (1.542) | 0.060 (1.542) |
|                              | (1.542)      |               |               |
| Gauge Thickness, in. (mm)    | 0.020        | 0.020 (0.508) | 0.060 (1.542) |
|                              | (0.508)      |               |               |
| Total Length, in. (mm)       | 1.000        | 1.000 (25.40) | 1.000 (25.40) |
|                              | (25.40)      |               |               |
| Yield Stress, ksi (MPa)      | 61.5 (424)   | 252 (1738)    | 50 (345)      |
| Ultimate Tensile Stress, ksi | 130.5 (900)  | 257 (1772)    | 65 (448)      |
| (MPa)                        |              |               |               |
| Uniform Elongation, %        |              |               |               |
| Total Elongation, %          | 51.8         | 9.0           | 2.0           |
| Reduction in Area, %         |              | 63            |               |

## **TENSILE TESTING RESULTS**



# **EXPERIMENTAL SETUP FOR SIDE-REACTIONS STUDY**

#### Beam:

40 MeV, 1.5 kW power 30 min, 4 hrs

#### **Target:**

Nat and enriched <sup>100</sup>Mo-97.4%, 2.6% <sup>98</sup>Mo) Ta convertor 3 mm (6×0.5 mm) water cooled Al plates before and after Convertor: ~3mm thick 2 Mo targets 1 mm thick each





|                | Nuclide           | energy, keV | T1/2, hrs |
|----------------|-------------------|-------------|-----------|
|                | <sup>90</sup> Mo  | 257.3       | 5.67      |
|                | <sup>99</sup> Mo  | 739.5       | 66.2      |
|                | <sup>90</sup> Nb  | 1129.1      | 14.6      |
| Enriched Mo100 | <sup>91m</sup> Nb | 1205        | 1536.1    |
| Natural Mo     | <sup>92m</sup> Nb | 934.5       | 243.8     |
| Impurities     | <sup>95m</sup> Nb | 235.4       | 86.6      |
|                | <sup>95</sup> Nb  | 765.8       | 839.5     |
|                | <sup>96</sup> Nb  | 1091.5      | 23.4      |
|                | <sup>97</sup> Nb  | 657.9       | 1.23      |
|                | <sup>98m</sup> Nb | 787.2       | 0.852     |
|                | <sup>88</sup> Zr  | 392.85      | 2001.6    |
|                | <sup>89</sup> Zr  | 909.2       | 78.4      |
|                | <sup>95</sup> Zr  | 724.18      | 1536.5    |
|                | <sup>88</sup> Y   | 1836&898    | 2558.4    |
|                | <sup>51</sup> Cr  | 320.07      | 664.8     |
|                | <sup>54</sup> Mn  | 834.8       | 7490.4    |
|                | <sup>57</sup> Co  | 122.1       | 6480      |



# SIDE-REACTION PRODUCTS ON ENRICHED TARGET (97.4% Mo-100, 2.6% Mo-98)

#### **Short lived:**

 ${}^{98}Mo(\gamma,pn){}^{96}Nb$  - 23.35 hrs  ${}^{98}Mo(\gamma,p){}^{97}Nb$  – 1.23 hrs  ${}^{100}Mo(\gamma,pn){}^{98m}Nb$  – 0.852 hrs

### Long lived:

 $^{98}$ Mo(γ,p2n)<sup>95</sup>Nb - 840 hrs  $^{100}$ Mo(γ,n)<sup>99</sup>Mo - 66.2 hrs  $^{100}$ Mo(γ, αn)<sup>95</sup>Zr - 1536 hrs

| 97.4% Mo100<br>2.6% Mo98 | ppm  |    |
|--------------------------|------|----|
| W                        | 75.1 | 18 |
| Ge                       | 11.4 | 71 |
| Cu                       | 14.9 | 64 |
| Ni                       | 39.4 |    |
| Fe                       | 540  | 55 |
| Mn                       | 5.7  |    |
| Cr                       | 64   |    |

<sup>85</sup>W – lbr, <sup>181</sup>W – <70keV, ND <sup>1</sup>Ge – 10keV, <sup>69</sup>Ge – 511keV <sup>4</sup>Cu – 511keV

Fe – 6keV

#### **Impurities:**

 $^{55}$ Mn( $\gamma$ ,n) $^{54}$ Mn - 7490 hrs  $^{52}$ Cr( $\gamma$ ,n) $^{51}$ Cr - 665 hrs  $^{58}$ Ni( $\gamma$ ,p) $^{57}$ Co - 6480 hrs



### No <sup>95m</sup>Nb detected – low production





# **MONTE CARLO CALCULATIONS**

### Monte Carlo simulation tool: PHITS 3.02 Photonuclear reaction cross sections: JENDL

γ ray energy distribution on the target
✓ Energy vs Flux









electron



× [cm]

# COMPARISON OF THE PRODUCTION RATES

Experimental vs calculated values for 30 min and 4 hrs irradiation with enriched <sup>100</sup>Mo (97.4%)

| Halflife, hours | Isotope | Experimental production<br>rates for 30 min irradiation<br>normalized by Mo-99<br>production rate | Experimental production<br>rates for 4 h irradiation<br>normalized by Mo-99<br>production rate | Calculated production<br>rates for 30 min irradiation<br>normalized by Mo-99<br>production rate | Calculated production<br>rates for 4 h irradiation<br>normalized by Mo-99<br>production rate |
|-----------------|---------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 66.19           | Mo-99   | 1.00E+00                                                                                          | 1.00E+00                                                                                       | 1.00E+00                                                                                        | 1.00E+00                                                                                     |
| 839.52          | Nb-95   |                                                                                                   | 4.26E-05                                                                                       | 1.42E-06                                                                                        | 1.50E-06                                                                                     |
| 23.35           | Nb-96   | 1.12E-04                                                                                          | 1.07E-04                                                                                       | 1.26E-05                                                                                        | 1.26E-05                                                                                     |
| 1.233           | Nb-97   | 1.46E-03                                                                                          |                                                                                                | 1.12E-04                                                                                        | 1.13E-04                                                                                     |
| 0.852           | Nb-98   | 1.11E-03                                                                                          |                                                                                                | 1.56E-04                                                                                        | 1.56E-04                                                                                     |
| 1536.48         | Zr-95   | 2.07E-04                                                                                          | 2.02E-04                                                                                       | 7.11E-05                                                                                        | 7.12E-05                                                                                     |
| 664.8           | Cr-51   |                                                                                                   | 1.37E-04                                                                                       |                                                                                                 |                                                                                              |
| 7490.4          | Mn-54   | 3.16E-05                                                                                          | 3.09E-05                                                                                       |                                                                                                 |                                                                                              |
| 6480            | Co-57   | 4.31E-05                                                                                          | 6.00E-05                                                                                       |                                                                                                 |                                                                                              |







# **ACCELERATOR VAULT DESIGN**

### **Requirement:**

- Be able to perform maintenance on one of the accelerators while other is performing irradiation
- Concrete thickness in direction of beam has to be ~4m if only ordinary concrete is used. It can be significantly reduced if lead, iron or heavy concrete is used
- 2.5 m of ordinary concrete is required on direction perpendicular to the beam







# **ACCELERATOR VAULT DESIGN**

- When maintenance is not performed during irradiation vault can be much smaller
- Better access to the beamline and accelerator
- Shorter beamline can be used







## **FACILITY DESIGN**







### SUMMARY

- Utilization of high-Z converter provides up to 6% boost in Mo-99 production
- Beryllium and maraging steel target window can accommodate high beam power for the same target design compared with Inconel 718
- Main long-lived RN on enriched target: <sup>95</sup>Zr, <sup>95</sup>Nb
- Level of impurities introduced during recycling is important for final material purity
- Recommendations for the beamline and shielding configuration are developed



# ACKNOWLEDGEMENTS

- Peter Tkac
- Roman Gromov
- Chuck Jonah
- Brad Micklich
- Kurt Alford
- Ken Wesolowski
- Kevin Quigley
- Jim Bailey
- George Vandergrift

- This work is conducted in collaboration with LANL and ORNL
- The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paidup nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.
- Work supported by the U.S. Department of Energy, National Nuclear Security Administration's (NNSA's) Office of Defense Nuclear Nonproliferation, under Contract DE-AC02-06CH11357.

