Niowave's Domestic Production of Mo-99 and other Fission Fragments from LEU without a Nuclear Reactor

Niowave, Inc. Lansing MI

September 25, 2018 Presented at the Mo-99 Topical Meeting Knoxville, TN

This document contains Niowave Proprietary Data. Not for release without prior written permission from Niowave.

Outline

- Closed-loop fuel cycle
- Additional fission fragments (beta emitters)
- Status of technical work
 - Superconducting electron linac
 - Uranium Target Assembly
 - Radiochemistry and target fabrication
- Laboratory assistance
- Regulatory agencies
- Scale-up plans

Niowave's Production Facility

Beta Emitters for Nuclear Medicine

Superconducting Electron Linac

Advantages for isotope production

- stable operation at very high beam power
- efficient in converting wallplug electricity into beam power

NI	OV	VA	V	Ε
www	niow.	avein	10.00	om

LEU fuel loading	27.4 kgU		
Fuel type	UO ₃		
Cladding type	6061-Al		
²³⁵ U enrichment	9.75 wt%		
Number of fuel rods	139		
k _{eff}	0.95-0.99		
Fission power	230 kW		
Neutron source	9.3-1.8 ×10 ¹⁴ n/s		
Electron beam parameters	40 MeV 590-110 kW		
Irradiation cycle length	7 days		
Fractional fuel burnup	0.015%		
Mo-99 activity	10 kCi/wk (EOB) 1.6 6-day kCi/wk		

Electron beam

The Uranium Target Assembly (UTA) is a subcritical assembly, open-pool type LWR

Neutron Source and UTA

• Windowless liquid Lead-Bismuth Eutectic (LBE)

UTA Loading and Testing

Gas extraction module

UTA-1 loading for Mo-99 production

NIOWAVE

Successfully operational fully coupled system:

- Superconducting linac coupled to UTA
- Neutron production verified and validated
- Mo-99 and other FF are produced

Mo-99 Extraction

Poster Tuesday 3:30 PM, Progress Toward an LEU Fuel Cycle for Domestic Radioisotope Production from Fission Fragments (Dr. Kristin Shannon, Niowave)

Partnering with Argonne

Argonne

- Working with Argonne since 2015
- Optimization of dissolution
 - Design, fabrication & testing of the automated LMC

Na₂MoO₄ and Xe Samples

Spectrum of Na2MoO4 Solution 105 Tc-99m Mo-99 141 keV 739 keV 10 Mo-99 181 keV Mo-99 Mo-99 778 keV 366 keV 10 Counts 10 10 10 200 500 6 Energy, keV 100 300 400 600 700 800 900 Spectrum from Volatile Gas Condenser 10⁴ Xe-138 Kr-88 Xe-135 258 keV 2392 keV 250 keV 10^{3} Xe-138 Xe-135m 2016 keV 527 keV Kr-88 Xe-138 10² 2196 keV 1768 keV 10 10 500 1000 1500 2000 2500

Energy, keV

Uranium Recovery and Target Preparation

- UREX
- Mechanical pressing of uranium oxide powder

Partnering with Y-12

Posters Tuesday 3:30 PM

Optimizing Extraction Processes and Fuel Fabrication for Mo-99 Production (Kaara Patton, CNS Y-12) Fabrication of Uranium Oxide Pellets for Efficient Radioisotope Production (Nathan Johnson, Niowave)

LEU Acquisition and Target Preparation

Natural uranium

 - 345 kgU (metal and oxide) at Niowave

Low Enriched Uranium (<20 wt% ²³⁵U)

- 1.8 kgU oxide at Niowave
- 18 kgU metal purchased from Y-12/NNSA

- State of Michigan
 - 40 MeV, 100 kW electron linacs
- NRC
 - Materials license
- FDA
 - Active pharmaceutical ingredient
 - Facility registration & Drug Master File
- DOT
 - Have shipped excepted, Type A, & Type B packages
- Waste
 - 3rd party broker

- 1. Materials license
 - Not "utilization" or "production" facility (10 CFR 50.2)
 - $k_{eff} < 1$ (not a reactor)
 - Limiting batches to < 100 g LEU (Cintichem process)
 - Components & processes are proven & benchmarked
- 2. Once > 7 kg LEU on-site
 - Establish a criticality safety program
- 3. Max LEU on-site < 100 kg LEU
 - Keeps us below "SNM of low strategic significance"
- 4. Processing LEU requires an environmental impact statement

Facilities [1]

Facilities [2]

NIOWAVE www.niowaveinc.com

Mo-99 Program Overview

Category	Phase 1	Phase 2	Phase 3	Phase 4
Production Level	Demo	Pilot	Commercial	Commercial – 2 nd Site
Fission Power	23 mW	230 W	230 kW	$2 \times 230 \text{ kW}$
Activity Produced ¹	1 mCi batches	10 Ci/week 1.55 6-dCi/week	10 kCi/week 1,550 6-dCi/week	20 kCi/week ² 3,100 6-dCi/week
Radiochemicals Produced	Mo-99 → Tc-99m Xe-133	Sr-89, I-131 Pr-143, Nd-147, Pm-149	Sr-90→Y-90 Sb-127→Te-127 Ce-144→Pr-144	TBD
Location	HQ	HQ / Airport	TBD	TBD
Completion Date	Dec 2018	Dec 2020	Dec 2025	Dec 2027
Budget	\$15M	\$35M ³	\$85M	\$63M

¹10 kCi/week Mo-99 EOB = 1,550 6 day Ci/week Mo-99 ²Two facilities, each operating at 10 kCi/week ³Includes DOE-NNSA Mo-99 contribution