

Updates on Implementation of Cyclotron-Produced Tc-99m

<u>Joel O. Kumlin¹</u>, F. Bénard², K.R. Buckley^{1,2}, M. Dodd², V. Hanemaayer², B. Hook¹ M. Kovacs², S. McDiarmid^{1,2}, F.S. Prato², T. Ruth², J.F. Valliant², M. Vuckovic², S. Zeisler^{1,2}

M. Cross^{1,2}, S. Foster^{1,2}, F. Gleeson^{1,2}, K. Hayashi^{1,2}, J. Schlosser^{1,2}, K. Wilson¹, P. Schaffer^{1,2}

¹ARTMS Products

∂ TRIUMF

²ITAP Consortium

Founding Institutions

ARTMS Products

Venture Capital

\$3 Million

Quark venture

Strategic Partners

Pre-2016 Supply Model

What if?

artms

Global demand for isotopes could be met without relying on a single-point-of-failure supply chain?

artms) 🛞

Post-March 2018 NRU Shutdown

What if?

Global demand for isotopes could be met without relying on a single-point-of-failure supply chain?

Generator Manufacturer Ra

ARTMS Supply Model

Clinic

Solution:

artms

Develop a method to produce Tc-99m, Ga-68 (and other isotopes) using hospital-based medical cyclotrons

 Cyclotron + ARTMS Technology

artms

Cyclotron Production: ¹⁰⁰Mo(p,2n)^{99m}Tc

Method

- Proton irradiation of isotopically enriched Mo-100 at 16-24 MeV
- Automated Mo-100 dissolution with H₂O₂
- Automated Tc-99m purification
- Final Tc-99m form: Injectable Sodium Pertechnetate

artms

Cyclotron Production Yields

GE **PETTrace** (16.5 MeV, 130 μA): 4.7 Ci in 6 hrs ACSI **TR19** (18 MeV, 240 μA): 13.9 Ci in 6 hrs ACSI **TR30** (24 MeV, 450 μA): ~39 Ci in 6 hrs

^{99m}Tc purification efficiency: >93%
 ¹⁰⁰Mo recycling efficiency: >95%

QUANTM Waste Management

- No uranium feedstock, no fissile by-products
- Feedstock materials all stable, non-radioactive:
 - •Tc-99m: Ta or Cu plate backings, Mo-100 substrate
 - Ga-68: Ag and/or Al plate backings, Zn-68 substrate
 - Zr-89: Ta plate backing, Y-89 substrate
 - Cu-64: Rh plate backing, Ni-64 substrate
- Irradiation process results in minimal by-products
 - Primary irradiation products are desired medical isotope
- Waste stream includes: isotope byproducts; activated target plates
 - All low-level/short-lived
 - Handled manually
 - Short term (weeks/months), on-site storage before disposal

Recap: 2017 Status

- Solutions developed for GE (16.5 MeV), ACSI 19 and 24 machines
- Clinical Trial Completed!
 - 30/30 bone patients scanned (Vancouver)
 - 30/30 thyroid patients scanned (Vancouver, London, Hamilton)
 - 'kit study' underway
- NDS submission (bone + kit) Q4 2017
- Rollout into UK **2018** (TR24 cyclotron)
- 1 orders for ARTMS QIS system completed
 - Additional orders being filled
- Discussions with Province of BC ongoing

Tc-99m Demonstration on IBA Cyclotron

artms

- Developed 24 mm diameter coin target (13 mm diameter Mo-100); using Press-Sinter-Braze
- Demonstrated Tc-99m production on IBA cyclotrons (18 MeV)
- Demonstration of Tc-99m purification on IBA Synthera Extension and integration with

Tc-99m Installations - Dinnington

Tc-99m Installations – TRIUMF (IAMI)

ARTMS Products Target Line

15

artms

- Solutions developed for GE (16.5 MeV), ACSI 19 and 24 machines
- Clinical Trial Completed!
 - 30/30 bone patients scanned (Vancouver)
 - 30/30 thyroid patients scanned (Vancouver, London, Hamilton)
 - 'kit study' underway
- NDS submission (bone + kit) Q4 2017
- Rollout into UK 2018 (TR24 cyclotron)
- 1 orders for ARTMS QIS system completed
 - Additional orders being filled
- Discussions with Province of BC ongoing

artms

2018 Status

- Solutions developed for GE (16.5 MeV), IBA (18 MeV), ACSI 19 and 24 MeV machines
- Clinical Trial Completed!
 - 30/30 bone patients scanned (Vancouver)
 - 30/30 thyroid patients scanned (Vancouver, London, Hamilton)
 - 'kit study' underway
- NDS submission (bone + kit) Q4 2018
- Rollout into UK Commissioning in 2019 (TR24 cyclotron)
- ARTMS QIS now CE Marked Q2 2018, CSA and UL Q4 2018
- 3 orders for ARTMS QIS system fulfilled
 - Additional orders being filled
- IAMI initiative at TRIUMF

Acknowledgements

L. Admans³, F. Bénard², K.R. Buckley^{1,2}, S. Creasey³, M. Dodd², V. Hanemaayer², B. Hook¹,

M. Jenkins³, M. Kovacs², S. McDiarmid^{1,2} F.S. Prato², T. Ruth², J.F. Valliant², M. Vuckovic²,

S. Zeisler^{1,2}, M. Cross^{1,2}, S. Foster^{1,2}, F. Gleeson^{1,2}, K. Hayashi^{1,2}, J. Schlosser^{1,2}, E. Tomson³,

K. Wilson¹, P. Schaffer^{1,2}

Thank You

Contact: Joel Kumlin kumlin@artms.ca

Backup Slide

Tc-99m Purity

Process Validation Batch No.		1509011	1509025	1510005
Batch Size (EOS) (GBq)		35.3	51.7	37.0
Final Product Amount at EOB (GBq)		41.2	61.1	43.5
Estimated Yield (%) (decay-corrected)		100	135	89
Membrane filter integrity (≥ 50 psi)		62	61	65
Specification	Acceptance Criteria	Results		
Visual Appearance	Clear, colorless solution, free from visible particulates	Conforms	Conforms	Conforms
pH	4.5 to 7.5	7.5	7.0	7.5
Radionuclidie purity	Isotopes other than ^{99m} Tc contribute an emission rate < 6,000 emissions/ sec/MBq of ^{99m} Tc	34	52	53
Radionuclidic identity	Half-life between 5.72 and 6.32 hours	5.81	5.84	5.83
Radiochemical purity	\geq 95%	100	100	100
Radiochemical identity	Rf = 0.8 - 1.0	1.0	1.0	1.0
Aluminum content	$\leq 10 \ \mu g/mL$ of solution (10 ppm)	<10	<10	<10
Hydrogen peroxide content	\leq 50 mg/L of solution (50 ppm)	0	0	0
Molybdenum content	\leq 30 µg/mL of solution (30 ppm)	0	0	0
Radioactivity concentration	(≤27.8 GBq/mL)	1.83	2.58	1.84
Bacterial endotoxins ²	$\leq 17.5 \text{ EU/mL}$	<2.5	<2.5	<2.5
Sterility ²	No growth	No growth	No growth	No growth

ARTMS Products

The QUANTM Irradiation SystemTM includes hardware and disposable targets to enable the local, de-centralized cyclotron production of medical isotopes
 QIS[™] is compatible with all

major OEM cyclotrons

Proprietary target plates for production of ^{99m}Tc, ⁶⁸Ga, ⁸⁹Zr, ⁶⁴Cu

Value Proposition

artms) 🛞

- Reliable daily production
 - Avoids single point of failure supply chain
- Supply independence and logistical compatibility
 - Local control, responsive to market needs
 - Well-suited for geographically concentrated patient populations
- Multiple revenue sources enabled by multiple isotope production capabilities
 - ^{99m}Tc product line established, CTA completed
 - Next isotopes developed: ⁶⁸Ga, ⁸⁹Zr, ⁶⁴Cu
 - Under investigation: ⁴⁴Sc, ⁵⁵Co, ¹¹⁹Sb, ¹²⁴I, ¹⁶⁵Er

QUANTM Irradiation System™

- Fitment to new and existing cyclotron systems
 - Available for all major cyclotron OEMs
- Cost competitive to existing production methods: reactor, generator
- Established target processing methods
 - Novel purification and formulation processes
- Global intellectual property protection
 - Unique, proven design and manufacturing techniques
- Environmentally benign
 - No long-lived, highly radioactive waste
 - Recycling of raw materials established

Q

AUSTRALIAN AND NEW ZEALAND

The one society for all nuclear medicine professionals

HOME ABOUT - MEMBERSHIP - GAMMA GAZETTE - EDUCATION - NEWS & EVENTS - RESOURCES - CONTACT member login

Back to list

Tc-99m Generator Advisory - Wednesday Sep 12, 2018 09:00hrs Wednesday 12, Sep 2018

> Tc-99m Generator Advisory Wednesday Sep 12, 2018 09:00hrs

The Working Group held a scheduled Tcon yesterday afternoon. The outlook for next week is for much the same as this week, except that some metro sites that normally receive an ANSTO generator may have run short of Tc99m this week waiting for Thursday / Friday delivery. This is the by-product of trying to catch up with fresh generators taking over from last week's stretched supply. Sites (usual ANSTO generator sites and GMS) should get regular supplies now and we should be close to full capacity next week.

The plan is for this situation to repeat each week including the day of your generator delivery. Concurrently, ANSTO will increase generator production locally and progressively move larger proportions of sites to local supply. This will not be a fast transition. Currently about 50% of departments are on locally produced generators and the remaining 50% plus GMS will be progressively supplied locally. Once local production is at or near 100%, plans will be made to migrate departments back to preferred delivery days and preferred generator sizes. Patience is requested until this is feasible.

The Working Group will continue to meet regularly and monitor the situation and provide updates as required.