

Domestic Production of Mo99

Mo99 Topical Meeting Santa Fe, NM December 4-7, 2011

James T. Harvey, Glenn H. Isensee, George P. Messina, and Scott D. Moffatt

NorthStar Medical Radioisotopes, LLC 706 Williamson Street, Suite 2 Madison, WI 53703

NorthStar's Short Term and Long Term Solution

Short Term and Long Term Solutions

- Short Term Solution (mid-2012)
 - Missouri University Research Reactor -
 - Contract in place effective March 2011
 - It is expected that this solution will eventually be able to produce 50% of the US requirement
- Long Term Solution (2014)
 - NorthStar's LINAC methodology for the production of Molybdenum-99
- Once up and running both solutions will be used to supply not only the US market but also overseas.
 - ► These two approaches require NorthStar's TechneGenTM technology in order to guarantee success

Missouri University Research Reactor (n,γ)

Production of Mo99 via Reactor at MURR

- MURR has produced Mo99 previously in large quantities by the (n,γ) method,
- MURR has outstanding operational record,
- MURR/NorthStar production agreement announced March 1st,
- Production upon FDA approval,
- UPS Express Critical® to handle shipping to client pharmacies;
- Spent Mo99 solutions returned ground for recycle,
- MURR capable of producing up to 3,000 6-day Ci per week, and
- No licensing issues.

Production of Mo99 via Reactor at MURR

BEST SHORT TERM SOLUTION TO ESTABLISH SIGNIFICANT DOMESTIC
MARKET SUPPLY WITHIN NEXT 6 MONTHS

LINAC Moly (γ, n)

Production of Mo99 via LINAC

- NorthStar has been active in this field since Nov 2007
 - NorthStar funded effort at RPI in early 2008 to validate the 1999 INL publication
 - o Produced small quantities of Mo99 in that study and validated calculated estimates and experimental results were comparable
- NorthStar facility will house up to 16 LINAC machines capable of producing >3,000 6D Ci per week
 - SA of Mo99 ~10Ci/g potentially
 - o one target set per day (~2,000Ci Mo99) processed
 - o steady, redundant production on a daily basis
 - UPS Express Critical[®] to handle shipping to client pharmacies; spent Mo99 solutions returned for recycle
 - NNSA supported via Cooperative Agreement
- Facility location has announced Beloit, WI
 - Located immediately adjacent to a new power substation being built with NorthStar requirements incorporated in the design - Location will have redundant power from two separate sources with automatic switching gear

Process Byproducts and Waste

Process Byproducts & Waste

- •OECD Report clearly noted that costs of handling and disposal of waste will be added to the cost of Mo99 going forward
- •FOA for NNSA Mo99 program clearly stated applicant could not assume DOE would take back the waste associated with LEU production.
- •Both n, γ and γ ,n Mo99 production processes by NorthStar use stable molybdenum isotopes as target material
 - Cost of disposal of NorthStar byproducts & waste is a small fraction of the total cost

NO URANIUM, PLUTONIUM, OR FISSION PRODUCTS ARE IN THE WASTE!

- Bulk of NorthStar waste handled as DNS (recycle) allowing for Mo99 and Tc99m to decay away before disposal as a low level rad waste
 - NorthStar will remove long-lived Tc99 as part of recycle process

Process Byproducts & Waste

	Highly Enriched Uranium ("HEU") produced Mo99	Low Enriched Uranium ("LEU") produced Mo99	Mo99 Production Processes (2,3)
Uranium including U238, U235, U234	Yes	Yes	No
Plutonium-239	Yes	Yes	No
Fission products	Yes	Yes	No
Alpha emitting waste	Yes	Yes	No
Long-lived radioisotopes (1)	Yes	Yes	Yes

- 1. Includes long-lived technetium-99
- 2. The cost to dispose of NorthStar's waste is <1¢ per mCi of Technetium-99m.
- 3. NorthStar has the ability to recover its raw material for reuse, thus reducing the cost of its raw material and reducing the volume of material to be handled as waste.

$TechneGen^{{\rm TM}}$

TechneGen

- Single Control System for up to (4) Mo99 Isotope Sources (scalable & shielded),
- Chemistry for Tc99m production is unaffected by Mo99 production route: Natural Mo material, enriched Mo, neutron activated, photon activated, or fission (uranium),
- Single administrative computer capable of multiple TechneGen control
- Microprocessor controlled instrument which runs independently from the PC when processing begins,
- Local shielding for Mo99 sources,
- Complete database history logged for each Tc99m elution,
- Automated operation after prerequisites, and
- Separable PC to a laboratory area dedicated TCP/IP network link.

TechneGen Instrument

- Localized shielding for Tc99m elution,
- Chemistry "kits" developed to control use of the instrument,
- User Interface optimized to reduce bioburden,
- Certified Protocols allow authorization for Tc99m elution
- Local display on instrument for progress review,
- Tc99m produced after passing thru a virgin Alumina Column, and redundant (2) sterility filters,
- Spent isotope source materials completely recyclable, and
- Ease of install, training and daily use nuclear pharmacist assisted in design
- ➤ FDA 505(b)(2) NDA application in process received FDA comments on Monograph and Microbiology test plans – NorthStar proceeding with FDA guidance – NDA submission is in process

TechneGen – development history ARSII results at ANL and NRC-Canada

- ARSII run 4 cycles, ~10 days each cycle, over a 3 month period at ANL beginning March 2010
 - Tc99m yields averaged >95% (industry avg. with current generators ranges from 70%-90%¹)
 - *When pH in range (4.5-7.5; USP)*
 - *Al breakthrough <10ppm (<10ppm required)*
 - Mo breakthrough <0.015µCi/mCi Tc99m (<0.15µCi/mCi required)
- ARSII installed at National Research Council of Canada in October 2009
 - Tc99m yields averaging >90%; purity 99% (>95% required)
 - When pH in range (4-8; Eu. Pharm.)
 - *Al breakthrough <10ppm (<10ppm required)*
 - Mo breakthrough <0.015µCi/mCi Tc99m (<0.15µCi/mCi required)
 - Sterile product (even <u>without</u> sterile input solutions and columns)

¹⁾ Radiopharmaceuticals in Nuclear Pharmacy and Nuclear Medicine, 2nd Edition, by Richard J. Kowalsky and Steven W. Falen, published by the American Pharmacists Association, 2004, p. 218

TechneGen – development history NRC-Canada

QC test	Criterion	^{99m} Tc tagged to tetrofosmin	^{99m} Tc tagged to MDP
Appearance	Clear, colourless	Pass	Pass
рН	5-9	6	6
Aluminum	< 10 ppm	Pass	Pass
Radiochemical purity	>95%	99%	99%
Radionuclidic purity	⁹⁹ Mo/ ^{99m} Tc < 0.00015	Pass	Pass

QC Results for sodium pertechnetate produced at NRC

TechneGen – development history NRC-Canada

QC test	Criterion	^{99m} Tc-tetrofosmin	99mTc-MDP
Appearance	Clear, colourless	Pass	Pass
рН	7.5-9 and 6.5-7.5	6	7
Radiochemical purity	>90%	98.3%	96.5%1
Radionuclidic purity	⁹⁹ Mo/ ^{99m} Tc < 0.00015	Pass	Pass
Bacterial enodtoxins	<0.125 EU/mL	Pass	Pass
Sterility	Sterile	Sterile	Sterile

QC Results for tagged Myoview (tetrofosmin) and MDP produced at OHI

Supply Chain

Reactor Produced Mo99 Supply Chain & Other Proposed Supply Chain

NorthStar's Supply Chain

Summary

- •Of all of the methods being proposed, no process has demonstrated technology viability as well as NorthStar has.
 - NorthStar has produced Mo99 from both production methods and has demonstrated that it's Mo99 meets the European monograph for Mo99,
 - NorthStar's TechneGenTM technology has consistently produced Tc99m with yields and purity levels drastically improved over current generators and has demonstrated that the Tc99m meets the USP monograph.
- •Both (n,γ) and (γ,n) Mo99 production processes by NorthStar use stable molybdenum isotopes as target material.
 - With (γ,n) or (n, γ) Moly, the target material is recoverable thus reducing the cost of the Mo100 or Mo98.
 - Both production methods present a more reliable supply
 - MURR's reactor up time performance cannot be matched by any reactor at least in the US
 - NorthStar's (γ,n) LINAC Moly produced is completely redundant where down time will be transparent to the customer.
 - NorthStar performs most steps in the supply chain one corporate overhead,
 G&A and profit

These factors offer NorthStar a powerful competitive advantage.

Discussion