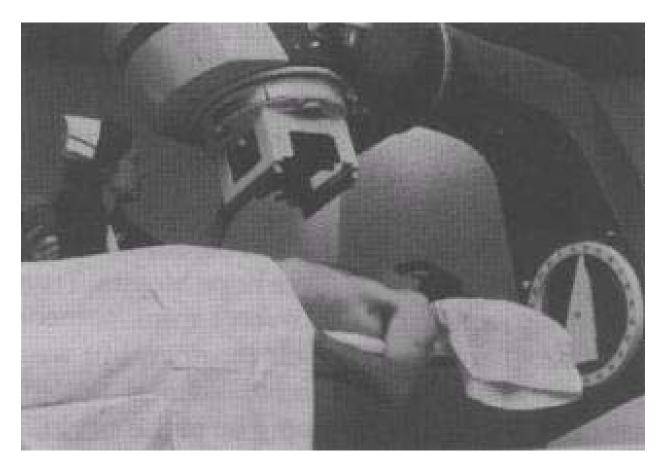
Canada's Medical Isotope Strategy

NNSA's Mo-99 Topical Meeting December 6, 2011

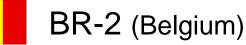

Shannon Quinn Natural Resources Canada

Purpose and Outline

- To provide an overview of the Government of Canada's policies and programs for securing supply of technetium-99m for Canadians
- Outline
 - o Context
 - o Role of Government
 - o Short-Term Action
 - o Programs
 - o Long-Term Vision

AECL At The Forefront

Cancer therapy unit produced by Atomic Energy of Canada Limited (installed in the University Hospital, Saskatoon)



Global Mo99 Suppliers

NRU (Canada)

OSIRIS (France)

Five global reactors: Supply 95% of global demand Approx. 630,000 Ci annually Distribute to four processors Coordinate production schedules

Context

- Vulnerabilities continue
 - o Linear supply chains with little redundancy
 - o Limited number of producers and processors
 - Aging infrastructure globally
 - Much of the supply comes from HEU sources

The Role of Government

- Promoting health and safety
- Establishing appropriate regulatory frameworks
- Allowing markets to work
- Facilitating international collaboration
- Funding high-risk, early-stage R&D
- Encouraging private-sector investment in innovation
- Supporting and respecting environmental and nonproliferation goals

Short-term Action

- NRU licensed to cover 2011 2016
- Scheduled maintenance outages of NRU each year
- Health care community, and provinces/territories, making more efficient use of available supplies and alternatives
- Health Canada continues to:
 - o Notify medical community as required
 - Help encourage advance planning and sharing of best practices
- International High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR) has helped manage supply fragility
 - Established under auspices of the Nuclear Energy Agency and Chaired by Canada
 - Improved coordination of reactor outage schedules
 - Commitment by producing countries to aim for full-cost recovery pricing
 - The second, two-year mandate is focused on implementation of recommendations from first two years

Work Toward the Long Term

Expert Panel assessed most viable options for securing a sustainable supply of Tc-99m over the medium to long term.

General Recommendations:

•Strive for diversity and redundancy throughout the supply chain

•Leverage multi-use infrastructure

•Continue with international coordination and seek processing standardization within North America

•Highly Enriched Uranium options are only viable in the short to medium term

Isotope Supply Initiative

- Via Budget 2010, the Government announced an investment of \$48 million to support its isotope strategy:
 - \$35 million provided over two years to Natural Resources Canada (NRCan) to support research, development and demonstration (RD&D) of non-reactor based technologies for the production of isotopes;
 - \$10 million provided over two years to the Canadian Institutes of Health Research for a clinical trials network to help move research on isotopes and imaging technologies into clinical practice; and
 - \$3 million over two years provided to Health Canada to investigate the optimal use of medical isotopes and alternatives.

Non-reactor-based Isotope Supply Contribution Program (NISP)

- On January 24, 2011, the Government announced the signing of four contribution agreements with respect to two cyclotron and two linear accelerator projects:
 - o Canadian Light Source Inc. (CLSI) (linear accelerator);
 - o Prairie Isotope Production Enterprise (PIPE) (linear accelerator);
 - o Advanced Cyclotron Systems Inc. (ACSI) (cyclotron); and
 - TRIUMF (cyclotron)
- By the end of this two-year funding program (March 2012), the goal is to have a much clearer picture regarding the commercial viability of these alternative technologies

NISP – Why linear accelerators and cyclotrons?

Advantages

- Distributed reduces single-point-of-failure issue
- Promise to be commercially viable
- Cyclotrons could be used for multiple purposes
- Some existing infrastructure and distribution channels
- o Area of Canadian expertise
- o Little radioactive waste

Risks

- o May not cover needs of more remote centres
- Still at an R&D stage of development with all of the associated risks
- o Supply and cost of molybdenum-100 uncertain
- Low priced "reactor moly" will likely continue to be available from foreign producers for some time

NISP – Work Underway

- Across the four projects, work is well underway in the following priority areas:
 - o target and converter design and optimization;
 - o cooling capacity;
 - o target processing and achievable yield;
 - o generator design and optimization;
 - o Mo-100 costs, availability and recycling;
 - o overall process optimization, including yield optimization; and,
 - o work to address regulatory requirements.

Long-Term Vision

- Canada as a leader in sustainable supply
 - Commercial production without government support
 - o Increased security of supply through diversification
- Canada as a technological leader
 - Through advances in cyclotron and linear acceleratorbased technologies for Mo-99/Tc-99m
 - o Creating new intellectual property
 - Providing opportunities for smaller countries/markets around the world
- Canada as an environmental leader
 - o Through a reduction in waste

Going Forward

Winter 2012 – Take stock of progress made with respect to non-reactor-based technologies and clinical trials work to bring other isotopes to market, as considered in the context of the global market

