RECENT ACTIVITIES OF KAERI RELATED TO FISSION MO-99

Dec. 7, 2011

C.K. KIM, M.S. Sim, S.J. CHOI, I.C. Lim, J.M. PARK,
Contents

1. New Korea Research Reactor
2. Atomized Uranium Particle Dispersion Target
3. Further Development on U Foil Fabrication
4. Summary
1. New Research Reactor Project

- HANARO had been designed and constructed from around the middle of 1980s. The operation has been done from the startup operation in 1995.

- HANARO has been utilized for neutron scattering experiments, irradiation tests of material and fuel for power reactor, RI production, silicon doping, neutron activation analysis, and neutron radiography.

- KAERI challenged to the Pallas and the JRTR projects under the base of the accumulated technologies and experiences.

- Fortunately KAERI was awarded in the bidding of the JRTR project. The design and the construction for the JRTR is underway.
1. New Research Reactor Project

- Korea imports radioactive isotope of Mo-99 and experienced the shortage previously.
- Also the need for silicon transmutation doping service is increasing.
- This motivated KAERI to construct a new research reactor.
- Additionally a U-Mo dispersion plate fuel production line using atomized U-Mo power in KAERI will be constructed to supply the fuel for the new reactor according to the non-proliferation policy.
1. New Research Reactor Project

● Objective
 ▶ A new research reactor which adopts the features that HANARO does not have.
 ➢ Bottom-driven control rod mechanism for easier movement of irradiation targets
 ➢ U-Mo plate type fuel
 ▶ Fulfilling the national RI demands
 ▶ Enlarging the neutron transmutation doping capacity

● Status and Plan
 ▶ A feasibility study has been conducted positively by a governmental institute (Korea Development Institute).
 ▶ The government allocated some budget for the new reactor project.
 ▶ The associated fund is expected to be supplied through National Assembly Approval from 2012.
 ▶ Proposed project period: 2012~2016
The designed major characteristics for the new research reactor are as follows:

- Reactor power: ~20 MW
- Reactor type: Pool type
- Maximum thermal flux: > 3.0x10^{14} n/cm^2s
- Operation: ~300 days/year
- Fuel: LEU U-Mo Plate type fuel
- CEDM (Control Element Driving Mechanism) location: bottom of core
- Reflector: Beryllium and Graphite
- Reactor life: 50 years

The reactor site will be located in Gijang-gun, which is a county near Busan city.
1. New Research Reactor Project

- The major utilization targets are radio-isotope production and neutron transmutation doping.
- The majority of isotope productions will be produced in this reactor including Mo-99, and the capacity will be decided enough to fulfill the national demand and for exportation to regional countries.
- After the completion of the project, the irradiation service functions of HANARO for isotopes will be turned over to the new reactor.
- HANARO will focus on neutron scattering experiments and fuel/material development.
Many commercial scale Mo-99 producers are using a dispersion plate type target of uranium aluminide.

The uranium aluminide targets are limited to 3.0 g-U/cc in uranium density of the target meat.

A high uranium density target using the uranium metal particles dispersion plate target is suggested with taking an advantage of the atomized U powder.

The target is presumed to be applicable from the low burnup and very short irradiation time.
2. Atomized Uranium Particle Dispersion Target

Atomization Technology

Atomizer

Atomized Particles

Principle

Atomizing

http://www.kaeri.re.kr
2. Atomized Uranium Particle Dispersion Target

- The atomized particles dispersion fuel could attain some higher density from smooth surface of spherical shape particles.

- Under the base of 45 vol.% in U_3Si_2 dispersion fuel, the corresponded density in uranium metal powder dispersion would be about 8.5 g-U/cm3.

- The equivalent density for 1.5 g-U/cm3 in HEU target is about 7.5 g-U/cm3.

- The atomized U powder dispersion target of more than 8.5 g-U/cm3 would be applicable.
2. Atomized Uranium Particle Dispersion Target

Existing Process

Atomized U particles Process
2. Atomized Uranium Particle Dispersion Target

Beneficial Aspects of Atomized Particles

● Available for Mass Production
 ➢ One batch for two days
 ➢ Batch capacity is about 5 kg, which is depending on
 the criticality control

● Rapid solidification: about 10^4 °C/sec
 ➢ Very fine grain: a few microns
 ➢ Tendency to form random orientation
 ➢ Better stability in irradiation performance

● Spherical shape
 ➢ Better formability in rolling process
 ➢ Lower porosity in as-fabricated dispersion meat
 ➢ A little higher U density than dispersion meat of
 irregular particles
 ➢ A littler better conductivity
2. Atomized Uranium Particle Dispersion Target

● The temperatures was calculated using the PLATE computer code developed by ANL

● Boundary condition
 - Heat flux: 250 W/cm²
 - Cooling water: 6 m/sec
 - Target meat thickness: 1.0 mm
 - Cladding thickness: 0.3 mm
 - Coolant out temperature: 40 °C

● Estimated thermal conductivity of dispersion: about 85 W/m-K.

● Estimation
 - ΔT for dispersion target meat: 4.5 °C
 - ΔT for cladding: 1.5 °C
 - ΔT for interface: 25 °C
 - Temp. at center: 71 °C

● The temperature of about 71 °C would be too low to induce the interface interaction.
2. Atomized Uranium Particle Dispersion Target

Further improvement for the target performance

- Grain refining
 - Making uranium particles with alloying some elements of Fe, Si, Al, Cr by adding the alloying elements into the crucible during atomizing

- Retarding interaction Rate
 - Silicon addition to aluminium matrix
 - Coating nitride on uranium particles
2. Atomized Uranium Particle Dispersion Target

Nitride coating on atomized U particles

Cross-sectional scanning electron micrographs of U-7wt%Mo powders
(a) as-atomized powder
(b) nitride coated powder
(c) enlarged micrograph of (a)
(d) enlarged micrograph of (b)
KAERI developed a process of directly forming foil from the melt by roll casting for LEU foil.

Some foils were distributed to various countries. However, a drawback on KAERI foil was issued.

The foil thickness is so inhomogeneous that some difficulties would be possibly suffered in applying to fission Mo target.

KAERI made efforts on improving the foil quality as well as the fabrication efficiency in 2008.
3. Further Development on U Foil Fabrication

Previous system
- **Quartz crucible with open nozzle**
 - Approaching
 - Feeding melt with pressure
- **Roll casting**
 - Diameter of 400 mm
 - Higher speed at about 500 rpm
 - Flying from strong centrifugal force
- **Collection of foil in space**
 - Crumpling in foil

New system
- **Graphite crucible with plugging**
 - Without approaching movement
 - Feeding melt with self-gravity
- **Tundish**
 - With nozzle
 - Diameter of 600 mm
 - Higher speed at about 60 rpm
 - Suppressing with gas injection on to solidifying
- **Roll casting**
- **Collection of foil in space**
 - Straitened foil without any crumbling
3. Further Development on U Foil Fabrication

- Gas injection
- Water-cooling jacket pad
3. Further Development on U Foil Fabrication

Previous

Present
3. Further Development on U Foil Fabrication

<table>
<thead>
<tr>
<th></th>
<th>Front end part</th>
<th>Middle part (5m from front tip)</th>
<th>Tail part (10 m from front tip)</th>
</tr>
</thead>
<tbody>
<tr>
<td>width (mm)</td>
<td>6.5</td>
<td>5.2</td>
<td>4.2</td>
</tr>
<tr>
<td>thickness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>199</td>
<td>182</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>198</td>
<td>160</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>242</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>172</td>
<td>176</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>119</td>
<td>169</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>120</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>158</td>
<td>133</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>136</td>
<td>146</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>131</td>
<td>131</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>139</td>
<td>142</td>
<td>146</td>
</tr>
<tr>
<td>average (µm)</td>
<td>135</td>
<td>139</td>
<td>145</td>
</tr>
<tr>
<td>standard deviation</td>
<td>34</td>
<td>35</td>
<td>33</td>
</tr>
</tbody>
</table>
The foil thickness was effectively controlled by revolution speed of casting roll and the clearance between melt feeding nozzle tip and casting roll surface.

By additional installation of diffusion vacuum pump and the precise maintenance for connection parts, the foil appeared more ductile with having luster surface.

The upper free surface of solidifying foil was changed from short range regularity to longer range regularity. The roughness of the upper surface got a little improved through this development effort.

The cooling jacket pad affected positively to form sound foil without any holes.
4. Summary

- **New Korean Research Reactor**
 - The project was fixed through a feasibility study of KDI. The associated fund will be provided through approving the nation assembly from next year.
 - The construction project is expected to be for 5 years from 2012.
 - The reactor will be utilized for radio-isotope production and neutron transmutation doping.
 - The production capacity of Mo-99 will be decided enough to fulfill the national demand and for exportation to regional countries.

- **Atomized Uranium Particle Dispersion Target**
 - The uranium density would be up to 8.5 g-U/cm3.
 - The target performance could be improved by alloying and coating.
4. Summary

- Further development on U Foil Fabrication
 - A sound uranium foil could be produced by adapting cooling jacket pad, forcing down the forming foil by Ar gas injection, accurately controlling the clearance between melt feeding nozzle tip and casting roll surface.
 - The thin sound foil approaching to 135μm without any holes was obtained.
 - The foil yield was advanced with producing long foil of more than 10 meter.
 - The foil roughness was not much improved.