NTP Radioisotopes (Pty) Ltd

Conversion Experience Regarding Transition of 99Mo Production from HEU to LEU in South Africa

G Ball

1st Annual Mo-99 Topical Meeting
Santa Fe, New Mexico, USA, 4-7 December 2011
Outline

- Background
- Conversion Project
- Current Status
- Impact of Conversion
- Challenges
- Concluding Remarks
Background

Map of South Africa

Rossing Uranium Mine
Pelindaba
NNR
Vaalputs
Koeberg

Uranium Mining and Processing
• Established site at Pelindaba in the mid 1960s

• Pelindaba is the Zulu word for “done talking”

• Pelindaba site is 2 361 ha

• 140 Permanent Buildings on the site

• Ecological reserve
Background

- Enriched Uranium Inventory
- Fuel Production Plant
- Nuclear Fuel Assemblies
- Target Plates
- Irradiated plates
- Radiochemical Production Plant
 - Chemical Extraction and purification of Mo-99
- Waste
- Nuclear Waste Management
- Waste Disposal & Storage Facilities
- SAFARI-1 Reactor
 - Target Plate Irradiation
- Local & International Users
- International Market
- Transport Container
 - Design
 - Manufacture, License
- NTP Generator Production
- Depleted Uranium Inventory
- Nuclear Fuel Assemblies
Background

- Development work on HEU process commenced in late 1980’s
- First hot runs (20Ci) took place in 1992
- Tc99m generator tests performed in 1993
- First 100 Ci Mo99 runs performed in 1993
- First generators with NTP Mo99 sold in Q2 1994
- First 200Ci Mo99 runs performed in Q3 1994
- First export Mo99 sales in Q4 1994
Background

– Pilot plant commissioned in 1992 but underwent various changes up to 1994
– New production line comes online in 1995
– Second production line comes online in 2000
– First production line upgraded in 2005
– Third production line under construction
(Required due to conversion)
Conversion Project

Mo-99 Target Conversion Strategic Considerations

- Minimum changes to target, irradiation, handling & chemical processes
- Retention of production capacity
- No interruption in current production
Conversion Project

Conversion to LEU to take place in 2 phases:

Phase 1: Known target technology;
minimum changes at reactor facilities;
minimum process changes.

Phase 2: New target;
changes at reactor facilities and process;
significant benefits

U-Al Dispersion target

Probably higher density target;
retrievable from clad
Conversion Project

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LEU</th>
<th>HEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat</td>
<td>Dispersion</td>
<td>Alloy</td>
</tr>
<tr>
<td>Enrichment</td>
<td>19.75%</td>
<td>45.0%</td>
</tr>
<tr>
<td>Uranium density (g.cm⁻³)</td>
<td>2.75</td>
<td>1.42</td>
</tr>
<tr>
<td>Dimensions (mm)</td>
<td>200/50/1.66</td>
<td>200/50/1.66</td>
</tr>
<tr>
<td>Cladding</td>
<td>Alloy</td>
<td>Pure aluminium</td>
</tr>
<tr>
<td>U-235 Loading</td>
<td>Maintain</td>
<td>(or minimise decrease)</td>
</tr>
</tbody>
</table>
Conversion Project

- Theoretical feasibility studies
- Cold experiments on depleted uranium targets
- Test Irradiation Program in SAFARI-1
- Process development and tests on irradiated LEU targets
- Process validation
- Licensing approval process
Conversion Project

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Theoretical feasibility studies</td>
</tr>
<tr>
<td>2008</td>
<td>Cold and depleted uranium experiments</td>
</tr>
<tr>
<td>Oct 2009</td>
<td>NNR approval received for test stage and first hot runs commence</td>
</tr>
<tr>
<td>Mar/Apr 2010</td>
<td>Process validation runs performed</td>
</tr>
<tr>
<td>Jun 2010</td>
<td>Submission to NNR for routine LEU 99Mo production</td>
</tr>
<tr>
<td></td>
<td>Submission of DMF to Medical Regulators commenced</td>
</tr>
<tr>
<td>Jul 2010</td>
<td>Customer tests and validation runs commenced</td>
</tr>
<tr>
<td>Sep 2010</td>
<td>NNR approval received for routine operation with LEU</td>
</tr>
<tr>
<td>Sep 2010</td>
<td>US FDA approves LEU 99Mo for a customer in the US</td>
</tr>
<tr>
<td>Dec 2010</td>
<td>First large scale commercial FDA approved batch of LEU 99Mo produced and shipped to US for patient use</td>
</tr>
<tr>
<td>Jun 2011</td>
<td>Routine commercial supply of LEU 99Mo commenced to some customers</td>
</tr>
</tbody>
</table>
Current Status

- Commercial supply to customers authorized to use LEU 99Mo
- Supply of LEU 99Mo to customers for testing/validation
- Significant investment in infrastructure (primarily due to significantly increased uranium residue volumes)
Current Status

New Dissolution Cell (currently under construction)

(Designed specifically for LEU 99Mo production)
Current Status

Percentage of LEU 99Mo Runs Performed

Data for 1 Jul – 31 Dec 11 estimated
Impact of Conversion

- Loss of in-house ability to manufacture fuel assemblies and target plates
- Decrease in 99Mo Production capacity due to less U235 loaded into the targets
- New uranium residue storage facility and additional dissolver line required

True impact

- Increased costs
- Decreased production capacity

BUT it is feasible
Challenges

Customer appetite

– Qualification of 99mTc generator manufacturer is significant and costly

– Customers generally see no benefit to themselves in sourcing LEU 99Mo

– Mixed response to conversion

Political will

– Lacking in some countries but strong in others

– Clear, unambiguous and well communicated political support yields results
Challenges

Regulatory Complexities

– The regulatory framework in some countries is complex and cumbersome

– Generator manufacturers have to qualify their products with the individual regulators of each country in which they operate
Challenges

Logistics

- Production with both HEU and LEU targets while minimising disruption to supply is a challenge

- 131I production using LEU targets and the validation and individual medical regulator approval thereof is a major challenge
Challenges

Economically sustainable 99Mo production

- NTP is a full-cost recovery company with no state subsidization
- The sustainability of the 99Mo market depends on full cost recovery – irradiation, processing and waste
Concluding Remarks

- Wonderful technological success achieved at large scale production volumes
- Great team effort with support from NNSA and AREVA/CERCA
- Solving the technical challenges of large scale 99Mo production with LEU is but the beginning of conversion
Concluding Remarks

- Market will only be sustainable if the playing fields are level:
 - True full-cost recovery (including cost due to conversion) must be implemented
 - Irresponsible behavior of some producers and governments must cease
 - Generator producers must be prepared to pay the increased prices (and thereby ensure a long-term sustainable supply)
Thank you for your attention