Overview of Argonne Support for Mo-99 Medical Isotope Production: NorthStar Medical Technologies

Sergey Chemerisov\textsuperscript{a}, George Vandegrift\textsuperscript{a}, Gregory Dale\textsuperscript{b}, Peter Tkac\textsuperscript{a}, Roman Gromov\textsuperscript{a}, Vakho Makarashvili\textsuperscript{a}, Bradley Micklich\textsuperscript{a}, Charles Jonah\textsuperscript{a}, Thad Heltemes\textsuperscript{a}, David Rotsch\textsuperscript{a}, Keith A. Woloshun\textsuperscript{b}, Michael Holloway\textsuperscript{b}, Frank Romero\textsuperscript{b} and James Harvey\textsuperscript{c}

\textsuperscript{a}Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, \textsuperscript{b}Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, \textsuperscript{c}NorthStar Medical Technologies, LLC, 5240 Femrite Drive, Madison, WI 53718

ABSTRACT

Argonne National Laboratory (Argonne) and Los Alamos National Laboratory (LANL) are supporting NorthStar Medical Technologies in their efforts to become a domestic $^{99}$Mo producer. NorthStar Medical Technologies is utilizing the accelerator production technology pathway for the production of $^{99}$Mo using a photonuclear reaction $^{100}$Mo($\gamma$,n)$^{99}$Mo in an enriched $^{100}$Mo target. So far we have performed six demonstration of the $^{99}$Mo production, with natural and enriched $^{100}$Mo, utilizing liquid (water) and gaseous-He cooling. Those experiments have demonstrated production of the $^{99}$Mo at relatively high beam power on the target and effective separation of the $^{99m}$Tc from low-specific-activity Mo targets. Following a completion of the upgrade to the Argonne electron linear accelerator, we are conducting a series of thermal and production experiments with three different enriched $^{100}$Mo target disks and at higher power and at different beam energies to optimize $^{99}$Mo production. Other investigations include calculation for development of the requirement of the facility shielding, design of the beam-transport components, beam diagnostic, components reliability studies, and enriched molybdenum recovery and purification. This presentation will review the current status of the project.