IAEA Activities Supporting Mo-99 Production without the use of HEU

Joanie Dix

99Mo Topical Meeting

Washington, DC 24-27 June 2014
IAEA Priorities for 99Mo

HEU Minimization
Transition of 99Mo production away from the use of highly enriched uranium (HEU)

Stability of Supply
Diversification of supply and movement to full cost recovery to ensure the global demand is met
The IAEA can assist Member States in their 99Mo work through various types of activities. These include:

- Coordinated Research Projects
- Technical Cooperation Projects
- Regular program activities
 - Networks and coalitions
 - Participation in complimentary, international activities
 - Meetings
 - Missions
 - Publications
 - General Conference side-events
Conversion of Major 99Mo Producers to LEU

- Supported by US DOE-NNSA and the Government of Norway
- Series of working group meetings for key stakeholders to review progress, exchange information and explore opportunities for mutually beneficial collaboration
- Receiving updates on LEU high-density targets, and accompanying chemical processes
- Most recent meeting took place 27-28 January 2014
Small-scale, non-HEU 99Mo production

- Draft publication on Feasibility of Small-Scale 99Mo Production using LEU Fission or Neutron Activation Methods
 - In final review now; scheduled for publication in 2014
 - Incorporates the results of the Coordinated Research Project on small-scale production (2005-2011)
Small-scale, non-HEU 99Mo production

- Technical Cooperation Project started in 2013
- Aimed at assisting small-scale, national-level producers in setting up their production capability;
 - NOT aimed at creating commercial producers
- Will rely on LEU fission or n, gamma-based production
- Open to any IAEA Member States wishing to receive advice and assistance
- Production infrastructure fact-finding missions were completed to Mexico, Morocco, Peru, Poland, and Romania. Similar missions were conducted in Egypt (2010) and Malaysia (2011)
Small-scale, non-HEU 99Mo production

- **Expert Missions**
 - 99Mo production project progress review missions
 - Production infrastructure readiness missions
 - IAEA and project counterpart missions to 99Mo production facilities and laboratories

- **EURASIA Coalition work**
 - Reactors in Eastern Europe and former Soviet states cooperating to produce low specific activity 99Mo via neutron capture of 98Mo (launched in 2008)
• Intended to study technical and economic aspects of 99Mo waste streams in cooperation with the OECD-NEA
• Work on this study was halted due to the low response rate (<50%)
• Without this information, the study would not have the necessary data to contribute any meaningful analysis
Coordinated Research Project on Accelerator-based Alternatives to Non-HEU Production of 99Mo/99mTc
Participating Countries

- ARMENIA
- BRAZIL
- CANADA
- HUNGARY
- INDIA
- ITALY
- JAPAN
- KINGDOM OF SAUDI ARABIA
- POLAND
- SYRIA
- UNITED STATES
Alternative Routes to $^{99}\text{Mo/}^{99\text{mTc}}$ Production

- $^{100}\text{Mo}(p,pn)^{99}\text{Mo}$
- $^{100}\text{Mo}(\gamma,n)^{99}\text{Mo}$
- $^{98}\text{Mo}(n,\gamma)^{99}\text{Mo}$
- $^{100}\text{Mo}(n,2n)^{99}\text{Mo}$

^{99}Mo (T$_{1/2} = 66$ h)

- $^{100}\text{Mo}(p,2n)^{99\text{mTc}}$
- $^{98}\text{Mo}(d,n)^{99\text{mTc}}$
- $^{98}\text{Mo}(p,\gamma)^{99\text{mTc}}$

$^{99\text{mTc}}$ (T$_{1/2} = 6$ h)
Cyclotron Production of 99mTc

100Mo(p,2n)101Tc → 99mTc
Cyclotron Production of 99mTc

100Mo(p,2n)99mTc

Irradiation → Target Processing → Radionuclide Separation
Main issues

- Target preparation (withstand heat generated by the beam)
- Radionuclidic separation Mo/99mTc: fast and high yield
- Recovery of the target: enriched and high cost
- Radionuclidic impurity: choose optimum beam energy, time of irradiation and decay time; select the target carefully!
- Delivery of 99mTc
Radionuclidic Impurities

100,9xMo(p,2n)9xTc series

![Graph showing cross-section vs. incident proton energy for various isotopes of Tc](image-url)
Radionuclidic Impurities

<table>
<thead>
<tr>
<th>Z</th>
<th>95Ru</th>
<th>96Ru</th>
<th>97Ru</th>
<th>98Ru</th>
<th>99Ru</th>
<th>100Ru</th>
<th>101Ru</th>
<th>102Ru</th>
<th>103Ru</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>1.643 H</td>
<td>2.83 D</td>
<td>1.87%</td>
<td>12.76%</td>
<td>12.60%</td>
<td>17.08%</td>
<td>31.55%</td>
<td>39.247 D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>94Tc</td>
<td>95Tc</td>
<td>96Tc</td>
<td>97Tc</td>
<td>98Tc</td>
<td>99Tc</td>
<td>100Tc</td>
<td>101Tc</td>
<td>102Tc</td>
</tr>
<tr>
<td></td>
<td>293 M</td>
<td>20.0 H</td>
<td>4.28 D</td>
<td>4.21 E+6 Y</td>
<td>4.2 E+6 Y</td>
<td>2.111 E+5 Y</td>
<td>15.46 S</td>
<td>14.02 M</td>
<td>5.28 S</td>
</tr>
<tr>
<td></td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
</tr>
<tr>
<td>41</td>
<td>93Mo</td>
<td>94Mo</td>
<td>95Mo</td>
<td>96Mo</td>
<td>97Mo</td>
<td>98Mo</td>
<td>99Mo</td>
<td>100Mo</td>
<td>101Mo</td>
</tr>
<tr>
<td></td>
<td>4.0 E+3 Y</td>
<td>9.15%</td>
<td>15.84%</td>
<td>16.67%</td>
<td>9.60%</td>
<td>24.39%</td>
<td>65.976 H</td>
<td>7.3 E+18 Y</td>
<td>14.61 M</td>
</tr>
<tr>
<td></td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
</tr>
<tr>
<td>40</td>
<td>92Nb</td>
<td>93Nb</td>
<td>94Nb</td>
<td>95Nb</td>
<td>96Nb</td>
<td>97Nb</td>
<td>98Nb</td>
<td>99Nb</td>
<td>100Nb</td>
</tr>
<tr>
<td></td>
<td>3.47 E+7 Y</td>
<td>100%</td>
<td>2.03 E+4 Y</td>
<td>34.991 D</td>
<td>23.35 H</td>
<td>72.1 M</td>
<td>2.86 S</td>
<td>15.0 S</td>
<td>1.5 S</td>
</tr>
<tr>
<td></td>
<td>1.000%</td>
<td>0.00%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
</tr>
<tr>
<td>39</td>
<td>91Zr</td>
<td>92Zr</td>
<td>93Zr</td>
<td>94Zr</td>
<td>95Zr</td>
<td>96Zr</td>
<td>97Zr</td>
<td>98Zr</td>
<td>99Zr</td>
</tr>
<tr>
<td></td>
<td>11.22%</td>
<td>17.15%</td>
<td>1.61 E+6 Y</td>
<td>17.38%</td>
<td>64.032 D</td>
<td>2.35 E+19 Y</td>
<td>16.749 H</td>
<td>30.7 S</td>
<td>2.1 S</td>
</tr>
<tr>
<td></td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
<td>1.000%</td>
</tr>
</tbody>
</table>
Conclusions

Optimized Production Conditions

- Target enrichment: $\geq 99.05\%$
- Proton Energy Window: $15 > E_p > 20$ MeV
- Irradiation Time: < 3 hours
- Proton Current: $400\ \mu$A
- In-Target Yield: ~ 6 Ci
Points of Contact

• Nuclear Energy – Research Reactor Section
 J.Dix@iaea.org
 E.Bradley@iaea.org

• Nuclear Science & Applications – Radioisotope Products and Radiation Technology Section
 J.A.Osso-Junior@iaea.org
 M.Venkatesh@iaea.org