

Future Supply of ⁹⁹Mo, ⁹⁹mTo Mark Frontera, GE Global Research Center

Mark Frontera, GE Global Research Center June 26th, 2014

Aaron Bernstein $^{\rm b}$, Tomas Eriksson $^{\rm d}$, Mathilde Figon $^{\rm b}$, Karin Granath $^{\rm d}$, Martin Orbe $^{\rm d}$, Charlie Shanks $^{\rm b}$, Erik Stromqvist $^{\rm d}$, Julie Woodland $^{\rm c}$, Peter Zavodszky $^{\rm a}$, Uno Zetterberg $^{\rm d}$

- ^a GE Global Research Center, Niskayuna, NY 12309 USA
- ^b GE Healthcare Global Supply Chain, Arlington Heights, IL 60004 USA
- ^CGE Healthcare Life Sciences, Amersham, England UK
- ^D GE Healthcare Cyclotrons, Uppsala, Sweden

Imagination at work.

	Development Toward Non-HEU Based Mo-99 Production, Session I Session Chair: Chris Bryan	3:30 pm	Northwest Medical Isotopes, LLC Overview and Status	Carolyn Haass (Northwest Medical Isotopes, LLC)
			Current Engineering and Design Activities at LANL Supporting Commercial U.S. Production of Mo-99 Without the Use of HEU	Gregory Dale (LANL)
8			NorthStar Progress Towards Domestic Mo-99 Production	Jim Harvey (NorthStar Medical Radioisotopes)
			Overview of Argonne Support for Mo-99 Medical Isotope Production: NorthStar Medical Technologies	Sergey Chemerisov (ANL)
			Powder Metallurgy Fabrication of Thin, Flat Molybdenum Disks	Richard Lowden (ORNL)
			Future Supply Options of Mo-99, Tc-99m	Mark Frontera (GE Global Research)
	5	:30 pm Post	er Setup in Sphinx Grand Ballroom — Almas Temple	
			6:00 pm Poster Session and Reception	
		1	Meeting Room: Sphinx Grand Ballroom	

GE Healthcare Nuclear Medicine Presence

⁹⁹Mo ^{99m}Technetium Generators Cardiology, Neurology, Oncology Other diseases

Life Sciences & Global Supply Chain

99mTc based Products on global market99mTc Generators serving 38 Countries31 United States Radio pharmacies

Nuclear Cameras

+5,500 Cameras sited Multiple Product Offerings

PET Cyclotrons

330 Cyclotrons sited 10 MeV, 16 MeV Platforms

Today's Supply Chain

Tomorrow's Supply Chain?

Medical Cyclotron Installed Base

Cyclotron 99mTc Production

(left) TRIUMF-designed, GE PETtrace solid target capsule; (right) with mounted ¹⁰⁰Mo target Reference: P Schaffer, personal communication.

Beam Current (uA)	Production Volume (Ci)	Estimated Number of 25 mCi dose per 6 hour run (assuming 50% loss)
130 (IB)	5	100
250 (IB Upgrade)	10	200
400 (Future)	15	300

Some Challenges: Regulatory Path & 100Mo Supply Model

In Summary

- Global supply chain challenges of ⁹⁹Mo, FCR, and conversion to LEU production will stress the current medical imaging supply chain.
- GE is positioned to maintain its current role as a provider of nuclear cameras, agents, ⁹⁹Mo generators, and radio pharmacies.
- With regulatory and support establishing a ¹⁰⁰Mo supply chain, a global introduction of cyclotron produced ^{99m}Tc may enable a stronger ORC position and local supply independence in 2017.
 - Also enables additional tolerance to program, economic, and engineering delays of the alternate production techniques entering the market from 2016 to 2020.
- Government, Industry, Academia and Entrepreneurs must collaborate to provide a stable supply of isotopes from today to beyond 2020.

Works Cited

- Ballinger, J. R. (2010). 99Mo shortage in nuclear medicine: crisis or challenge? Journal of Labelled Compounds and Radiopharmaceuticals, 167-168.
- Beaver JE, H. H. (1971). Production of 99mTc on a medical cyclotron: a feasibility study. J Nucl Med, 739–741.
- Bénard, F. e. (2014). Implementation of Multi-Curie Production of 99mTc by Conventional Medical Cyclotrons. Journal of Nuclear Medicine, 1017-1022.
- Celler, A. H. (2011). Phys. Med. Biol 56, 5469.
- Dick, D. (2014). Diversification of 99Mo/99mTc Supply. The Journal of Nuclear Medicine, 1-2.
- Gagnon, K. (2011). Cyclotron production of 99mTc :experimental measurement of the 100Mo (p,x)99Mo, 99mTc and 99gTc excitation functions from 8 to 18MeV. Nucl.Med. Biol., 907–916.
- Galea, R. e. (2013). A comparison of rat SPECT images obtained using 99mTc derived from 99Mo produced by an electron accelerator with that from a reactor. Physics in medicine and biology, 2737.
- Guérin, B.-P. v. (2010). Cyclotron production of 99mTc: an approach to the medical isotope crisis. J.Nucl.Med.Newsline, 13N–16N.
- http://www.genewscenter.com/Press-Releases/GE-Healthcare-Announces-FDA-Approval-to-Supply-Technetium-99m-Generators-4743.aspx. (n.d.).
- Morley, T. J. (2012). An automated module for the separation and purification of cyclotron-produced 99mTcO4. Nuclear medicine and biology, 551-559.
- NOORDEN, R. V. (2013, December 12). THE MEDICAL TESTING CRISIS. Nature, pp. 202-204.
- OECD. (2010). The Supply of Medical Radioisotopes: An Economic Study of the Molybdenum-99 Supply Chain.
 NUCLEAR ENERGY AGENCY.
- OECD, N. (2014). MEDICAL ISOTOPE SUPPLY IN THE FUTURE: PRODUCTION CAPACITY AND DEMAND FORECAST FOR THE 99Mo/99MTc MARKET, 2015-2020.
- Pillai, M. R. (2013). Sustained Availability of Technetium-99m-Possible Paths Forward. Journal of Nuclear Medicine.
- Quaim, S. S. (2014). Appl. Rad. Isot., 101-113.
- Schaffer. (2014). Private Communication.
- Sciences, N. A. (2009). Medical Isotope Production Without Highly Enriched Uranium. USA: National Academies Press.
- SK Zeisler, e. a. (2014). 15th International Workshop on Targetry and Target Chemistry (WTTC15). Prague, Czech Republic.
- Zavodszky, P. e. (2014). Presentation. San Antonio, TX: 23rd CAARI Conference, 25-30 May.

