

SHINE Chemistry Overview

A.J. Youker, G. F. Vandegrift, S. D. Chemerisov, K. Alford, J.L. Bailey, M. Bennett, D. Bowers, M. A. Brown, J. P. Byrnes, W. L. Ebert, A. Gelis, R. G. Gromov, L. Hafenrichter, A. Hebden, T. Heltemes, J. Jerden, C. D. Jonah, M. Kalensky, E. O. Krahn, J. Krebs, R. H. Lowers, V. Makarashvili, B. Micklich, C. Pereira, K. J. Quigley, D. Rotsch, M.J. Steindler, D.C. Stepinski, Z. Sun, P. Tkac, K. E. Wardle, and K. A. Wesolowski

Argonne National Laboratory

2015 Mo-99 Topical Meeting Boston, MA August 31 – September 3, 2015

SHINE Medical Technologies

- SHINE Medical Technologies is dedicated to being the world leader in safe, clean, affordable production of medical tracers and cancertreatment elements
- SMT and its partners have developed a system that can produce reactor-grade medical isotopes without a nuclear reactor
- Technology has two key aspects
 - Primary neutrons created by high-output D-T source
 - Neutrons enter an LEU solution where they multiply sub-critically and create medical isotopes
- Initial construction will produce nationally relevant quantities of Mo-99 and other medical isotopes (50% of U.S. Mo-99 demand)

Argonne's Role in Supporting SHINE

Major tasks

- Preparation of the uranyl sulfate target solution
- Development and design of the Mo-recovery system using TiO₂ sorbent
- Use of the LEU-Modified Cintichem process for Mo purification
- Periodic cleanup of irradiated target solution
- Radiation stability of system components and peroxide formation using the Van de Graaff
- Developing an understanding of radiolysis effects on
 - Solution chemistry
 - Gas generation
 - Precipitation
- Mini-SHINE experiments
- Micro-SHINE experiments

Mini-SHINE Experiments

- Argonne's mini-SHINE experiment will irradiate aqueous uranyl-sulfate solutions using an electron linac to:
 - Study the effects of fission on target-solution chemistry and radiolytic off-gas generation
 - Demonstrate the recovery and purification of ⁹⁹Mo from an irradiated target solution
 - With the assistance of PNNL, sample off gas for Xe, Kr, and I
 - Ship Mo-99 product to potential Tc-99m generator manufacturer partners
- Phase 1
- Linac will be operated initially at 35 MeV and 10 kW beam power on the target
- 5 L solution will be irradiated with neutrons generated through gamma-n reaction in tantalum target
- Maximum solution power will be \leq 0.05 kW/L
- Up to 2 Ci of Mo-99 will be produced
- Phase 2
- Experiment will be conducted at 35 MeV beam energy and up to 30 kW beam power
- 20 L solution will be irradiated with neutrons generated in a depleted-uranium (DU) target
- Maximum solution power will be \leq 0.5 kW/L
- Up to 20 Ci of Mo-99 will be produced

Mini-SHINE Progress

- Phase-1
 - Conservative approach
 - H₂O and NaHSO₄ tested first
 - To verify all system components before producing fission products
 - Radiation stability of components were verified using a Van de Graaff generator
 - Water and sodium bisulfate irradiations completed
 - 5 LEU uranyl sulfate irradiations (2 30 hours)
- Phase-2
 - Most of the equipment has been fabricated
 - Experiments to begin in November 2015

Important System Components

• 304 SS TSV with a 15-cm lightwater reflector/cooler

Shielded cell houses the TSV and Ta target

Dump tank below shielded cell stores irradiated solution

Target Solution Monitoring Glovebox

- Up to 7 samples collected during irradiation – done remotely
- Bubbles prevented reliable use of pH, conductivity, and turbidity probes
- Samples retrieved 8-24 hours post-irradiation

Mo-Recovery Glovebox

- Titania column to capture Mo-99 from irradiated uranium solution
- All operations are done remotely
 - Processing will begin 0-10 hours following irradiation
 - Target solution will be fed from the irradiation tank
 - Column effluent will go to the dump tank below the hot cell
 - Cold feeds are located inside the glovebox
 - Mo-product will exit the glovebox via a transfer line and go directly to 2nd hot cell for further processing
- Up to 15 samples can be collected from the feed, washes, and strip effluents
- Mo-product will be passed through a 2nd titania column and purified using the LEU-Modified Cintichem process

8

Concentration Column and LEU-Modified Cintichem

- In a second shielded cell (bigfoot), the Mo-product solution will be concentrated by a factor of ~15 using a much smaller column
 - Mo-product from the second column will then be acidified for entry into the LEU-Modified Cintichem process
 - Mo product will be concentrated down to 50 mL
 - LEU-Modified Cintichem process will be used to purify Mo-product

Gas Analysis System

Mini-SHINE Experiment—Off-Gas Analysis and Collection

- System is kept slightly negative by a 2-pump/3-tank off gas collection system
- Off gas in monitored by use of an RGA (Residual Gas Analyzer) during operation to measure hydrogen and oxygen generation
- A catalytic convertor is in-line to recombine hydrogen and oxygen
 - No oxygen generation has been observed for several hours after startup
 - Oxygen must be bled into the system during that time to keep H₂ level to below 1%
 - Samples of the off gas are collected and being sent to PNNL for analysis of volatile fission products
 - Thus far, it appears that the major fraction of radioiodine stays in the solution during operation

Gas Collection System

- All off-gases from experiment will be collected and decay stored
- Three cylinder system with increasing pressure
 <0=>4.5=>3500 psig
- Automatically maintain pressure in the solution vessel at -3 inches of water
- Final storage 6000 psig cylinder
- Pumps inside vessels to prevent pumps leaking into atmosphere

Mo-99 Purity Specifications

 Goal is to produce 2 Ci Mo-99 that meets purity specifications for testing at GE Healthcare in the UK and 15- 20 Ci Mo-99 for testing at Lantheus Medical Imaging (phase 2)

	Product	
Ratio (X/ ⁹⁹ Mo)	Specification	
¹³¹ I/ ⁹⁹ Mo	\leq 5×10 ⁻⁵	
103 Ru/ 99 Mo	\leq 5×10 ⁻⁵	
¹³² Te/ ⁹⁹ Mo	\leq 5×10 ⁻⁵	
⁸⁹ Sr & ⁹⁰ Sr/ ⁹⁹ Mo	$\leq 6 \times 10^{-7}$	
$\Sigma \alpha / ^{99}$ Mo	$\leq 1 \times 10^{-9}$	
$\Sigma \gamma / ^{99}$ Mo	$\leq 1 \times 10^{-4}$	

- Total gamma results do not include Tc-99m, Mo-99, I-131, Ru-103, or Te-132 and have not been reported
- Total alpha results for Mo product met purity specifications all irradiations (<10⁻¹⁰ Ci- α /Ci-⁹⁹Mo)
- Ratios are based on activities 36 hours after EOB
- Te-132 was below detection limits for each final Mo-99 product
- Sr-89 & Sr-90 activities were based on Ba-140 activity which was below detection
 limits for each final Mo-99 product

Mini-SHINE Results

Irradiation	Time (hr)	Mo-99 produced (mCi)	Met Purity Specs ²	Overall Mo-99 Yield
1	2	70 ¹	Yes	95%
2	8	350	Yes	86%
3	32	810	No ³	94%
4	20	380	Yes	42% ⁴
5	12	190		

- 1. Insufficient mixing
- 2. Purity specifications do not include total gamma results
- Purity specifications not met for Ru change in base concentration on 1st recovery column – changed chemical form of Ru
- 4. Modifications made to Cintichem to help remove Ru from previous irradiation longer contact with KMnO₄ destroyed ABO-Mo complex

Irradiated Solution Chemistry

- No changes in redox chemistry for Mo-99 (phase 1 conditions)
- Only ~30% Te remained adsorbed on 1st titania column
- >90% Zr remained adsorbed on 1st titania column
- 1st titania column Ru(40%), Ce(15%), and Sb(5%)
- Fission products that co-eluted with Mo-product from 1st titania column – Ru, I, and Sb
- No precipitation of fission products or formation of uranyl peroxide

What's Next?

- Experiments have been delayed due to decrease in U concentration dilution event in dump tank & spill
- Experiments to resume next week
- LEU solution will be reconstituted(94 g-U/L \rightarrow 140 g-U/L)
- 2-hour irradiation will be performed to get new production rates
- 2 Ci production run with shipment to GE Healthcare in mid-September
- Few short irradiations will be performed micro-SHINE peroxide formation experiments
- Phase 1 will be removed for phase 2 installation

Phase 2 Mini-SHINE Experiments

- Phase 2 will have a single glovebox
- Windows are Pb-glass to provide additional shielding
- Cold solutions will be kept below the interior of the box
- Transfer port will be used to bring materials and samples in and out
- Valving system will be similar to phase 1 solenoid valves
- Column will be larger (3.5 cm ID X 13 cm L)
- Flow rates will be ~170 mL/min
- CV is 125 mL

Summary and Conclusions

- Mini-SHINE experiments mini-pilot plant for SHINE
- Chemistry is good no changes in redox at least for Mo-99
- After ~3-3.5 hours of irradiation, hydrogen and oxygen reach a steady state
- Purity specifications met for I-131, Ru-103, Te-132, and Sr-89/90 for all irradiations except 3rd
- Important shipment to GE Healthcare in UK in September 2015
- Important shipment to Lantheus Medical Imaging (December 2015)

Acknowledgements

- The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.
- Work supported by the U.S. Department of Energy, National Nuclear Security Administration's (NNSA's) Office of Defense Nuclear Nonproliferation, under Contract DE-AC02-06CH11357.