DEVELOPMENT OF A PVD-BASED MANUFACTURING PROCESS OF MONOLITHIC LEU IRRADIATION TARGETS FOR ⁹⁹MO PRODUCTION

FORSCHUNG-NEUTRONENQUELLE HEINZ MAIER-LEIBNITZ (FRM II) TECHNISCHE UNIVERSITÄT MÜNCHEN

Tobias Hollmer 03.09.2015

FRM II AND 99MO PRODUCTION

- FRM II:
 - Commissioning: 2004
 - Power: 20 MW
 - Max. thermal neutron flux: $8 \cdot 10^{14} \frac{n}{cm^2s}$
- Currently: installation of an irradiation facility for ⁹⁹Mo production
- Parallel: research on a next level irradiation target

MONOLITHIC LEU TARGET

- High uranium density (HEU → LEU)
- Separability of the uranium foil (reduction of HRLW)

PRODUCTION PROCESS

PHYSICAL VAPOR DEPOSITION

- SPUTTER TARGET PRODUCTION
- 2. COATING
- 3. ASSEMBLY

1. Sputter target production

2. Coating

3. Assembly

- 1. Sputter target production
- 2. COATING
- 3. ASSEMBLY

COATING APPARATUS

- 1. Sputter target production
- 2. COATING
- 3. ASSEMBLY

GLOVEBOX SYSTEM

- 1. Sputter target production
- 2. COATING
- 3. ASSEMBLY

- 1. Sputter target production
- 2. COATING
- 3. ASSEMBLY

HOMOGENEITY

- 1. Sputter target production
- 2. COATING
- 3. ASSEMBLY

deposition characteristics: $f(z, z_S(t), Material)$

sputter rate: R(P(t), I(t), material)

coating process:

$$F(z) = C \int_0^T f(z, z_S(t)) R(t) dt$$

- 1. Sputter target production
- 2. COATING
- 3. ASSEMBLY

- High mechanical strength when applying high substrate temperatures (coil temperature + sputter power)
- Foils easily removable when using interlayers like graphite or aluminum

- 1. Sputter target production
- 2. COATING
- 3. ASSEMBLY

- Investigation of two different forming techniques:
 electromagnetic forming and hydraulic forming
- Successful demonstration of forming irradiation targets with sputtered foils

SUMMARY

- . Sputter target production
- 2. COATING
- 3. ASSEMBLY

Thank you for your attention!

