Engineering and Design Activities at Los Alamos National Laboratory Supporting Commercial U.S. Production of ^{99}Mo without the Use of HEU

Gregory E. Dale

^{99}Mo Topical Meeting

Boston, MA

September 3, 2015
LANL Support for Domestic 99Mo Production

- As part of the NNSA Material Management and Minimization (M^3) Program, LANL is supporting:
 - NorthStar Medical Radioisotopes with the electron accelerator production of 99Mo from 100Mo(γ,n)99Mo.
 - Shine Medical Technologies with the production of fission product 99Mo from a DT accelerator driven subcritical uranium salt solution.
The NorthStar process uses an electron accelerator to create a high flux of bremsstrahlung photons in enriched ^{100}Mo targets to create ^{99}Mo through the photonuclear reaction $^{100}\text{Mo}(\gamma,\text{n})^{99}\text{Mo}$.

- Reaction threshold is 9 MeV.
- Peak cross section is 150 mb at 14.5 MeV.

We are exploring electron beams in the 35-42 MeV range.

Average bremsstrahlung photon spectra produced with 20, 35, and 42 MeV electron beams in a Mo target compared to the photonuclear cross section of ^{100}Mo.
NorthStar Support Focus Areas

- Production and Thermal Tests at ANL
- Target Design and Testing
 - Target thermal performance
 - Production and radionuclide inventory
- Subsystem Development and Testing
 - Beam diagnostics
 - Target cooling system
 - Control systems
- Production Facility Design Support
 - Local target shielding
 - Beam line design
 - Target removal and conveyance
LANL Designed NorthStar Target Testing at ANL

Target Side View

LANL designed single sided target for thermal and production tests

Target consisting of 25, 12 mm diameter, 1 mm thick disks with 1 mm cooling gaps
Thermal Test Target installed at ANL
Scaled Accelerator Tests at ANL

<table>
<thead>
<tr>
<th>Date</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2010</td>
<td>Water cooled target test using natural Mo targets, produced 236 µCi of 99Mo.</td>
</tr>
<tr>
<td>May 2010</td>
<td>Water cooled target test using natural Mo targets, produced 377 µCi of 99Mo.</td>
</tr>
<tr>
<td>July 2010</td>
<td>Water cooled production test using enriched 100Mo targets, produced 10.5 mCi of 99Mo.</td>
</tr>
<tr>
<td>April 2011</td>
<td>Once through gaseous helium cooled thermal test using natural Mo targets, 145 µCi of 99Mo.</td>
</tr>
<tr>
<td>March 2012</td>
<td>Closed loop gaseous helium thermal test using natural Mo targets.</td>
</tr>
<tr>
<td>April 2014</td>
<td>Closed loop gaseous helium thermal test using natural Mo targets.</td>
</tr>
<tr>
<td>January 2015</td>
<td>35 and 42 MeV thermal tests at 13 kW and 7 kW, respectively. ~ 5 mm FWHM beam.</td>
</tr>
<tr>
<td>January 2015</td>
<td>Production Test 1: 42 MeV, 19 hours, 4.8 kW</td>
</tr>
<tr>
<td>March 2015</td>
<td>Production Test 2: 42 MeV, 19 hours, 7 kW</td>
</tr>
<tr>
<td>March 2015</td>
<td>Production Test 3: 42 MeV, 19 hours, 6 kW</td>
</tr>
<tr>
<td>May 2015</td>
<td>Production Test 4: 35 MeV</td>
</tr>
</tbody>
</table>
January 2015 Thermal Test
Target Thermocouple Data from the January 2015 Thermal Test 35 MeV, 13 kW beam, 290 psi inlet, 97 g/sec

Re = 34427

Thermal Test Results and Analysis available at:
SHINE Medical Technologies will produce fission product 99Mo in a subcritical accelerator driven low enriched uranium salt solution.
SHINE Support Activities

- Thermal hydraulics modeling
- Dynamic system simulation
 - System dynamics and reactivity modeling
- Gas nozzle design for the accelerator target
- Irradiations and separations chemistry
 - Measurement and control of the total uranium concentration
- Evaluation of the tritium recycle loop and associated systems (in partnership with SRNL)
- Zr Clad DU target fabrication
 - For the ANL photoneutron target for the mini-SHINE experiment.
Thermal Hydraulic Modeling

Fluid dynamics model developed to calculate steady state temperature and void fraction profiles for an externally cooled fuel solution vessel.

Computational fluid dynamics calculations performed in Ansys FLUENT.

- Heat transfer by natural convection enhanced by bubble generation
- Non-uniform volumetric heat and bubble generation profiles
- Temperature-dependent fuel and gas properties

Currently iterating with reaction simulations to obtain steady-state solutions for various conditions.

- Results will be used to improve heat transfer calculations in system model.

Table:

<table>
<thead>
<tr>
<th>Fuel Temperature</th>
<th>Bubbles Volume Fraction</th>
<th>Fuel Velocity w ZVel TubePlane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp1</td>
<td>VolFrac</td>
<td>[m s⁻¹]</td>
</tr>
<tr>
<td>49.4</td>
<td>2.0e-002</td>
<td>5.0e-002</td>
</tr>
<tr>
<td>47.0</td>
<td>1.8e-002</td>
<td>3.8e-002</td>
</tr>
<tr>
<td>44.5</td>
<td>1.6e-002</td>
<td>2.6e-002</td>
</tr>
<tr>
<td>42.1</td>
<td>1.4e-002</td>
<td>1.4e-002</td>
</tr>
<tr>
<td>39.6</td>
<td>1.2e-002</td>
<td>1.8e-003</td>
</tr>
<tr>
<td>37.2</td>
<td>1.0e-002</td>
<td>-1.0e-002</td>
</tr>
<tr>
<td>34.8</td>
<td>8.0e-003</td>
<td>-2.2e-002</td>
</tr>
<tr>
<td>32.3</td>
<td>6.0e-003</td>
<td>-3.5e-002</td>
</tr>
<tr>
<td>29.9</td>
<td>4.0e-003</td>
<td>-4.7e-002</td>
</tr>
<tr>
<td>27.4</td>
<td>2.0e-003</td>
<td>-5.9e-002</td>
</tr>
<tr>
<td>25.0</td>
<td>0.0e+000</td>
<td>-7.1e-002</td>
</tr>
</tbody>
</table>

Diagram:

- Fuel Temperature profile
- Bubbles Volume Fraction profile
- Fuel Velocity profile
Simulator for Accelerator-Driven System

- Implemented in LabVIEW
- Functional controls
- Strict operational sequencing and protocols enforced
- Data displays derived from DSS model
- Aids in human factors engineering of controls design
- With companion “Instructor’s Screen” may be used for operator training in start-up, normal and off-normal events
Tritium Nozzle Design

Purpose is to reduce the leakage of gas from the target to the accelerator vacuum

Concept Target

Gasses:
- Hydrogen
- Deuterium

Mesh

Nozzle Characterization

Target Gasses:
- Hydrogen
- Deuterium

CFD

Nozzle pressure in Torr

Mass flow rate into vacuum in g/s

Orifice Radius=0.0500 inches
Orifice Radius=0.1000 inches
Orifice Radius=0.1500 inches
Orifice Radius=0.1969 inches

Static Pressure in Pascal
Uranyl absorption spectroscopy – can be applied to uranium concentration measurement in solution

- A small aliquot of sample (e.g. 100 μL) diluted in excess of 1 M H₂SO₄ (2000 μL)

- \(\lambda_{\text{max}} \) (peak max, nm) and \(\varepsilon \) (molar absorptivity) vary with chemical composition
Fabrication of Zr clad DU Disks

DU Disk (actually, SS surrogate in the picture)

The Zr cladding was ebeam welded and then the cans were HIP bonded to create good thermal contact between the DU and Zr.
Characterization of the Zr Clad DU Disks

Optical Image of a sectioned test piece

Ultrasonic test results of the final machined component.

Assembly C2 – Post Machining
- Very small disbonded region observed near rim in upper right quadrant
- No appreciable difference noted from pre-machined sample
Summary

- LANL is partnering closely with NNSA and the other National Laboratories to help develop the commercial domestic production of 99Mo without the use of HEU.
- Under the M3 99Mo Program, we are currently supporting NorthStar Medical Radioisotopes and SHINE Medical Technologies.
- Leveraging the unique capabilities of the National Laboratories to facilitate the domestic production of 99Mo.