Corrosion Assessment of Candidate Materials for the SHINE Subcritical Assembly Vessel and Components

S. Pawel1, K. Leonard1, J. Thomson1, Z. Burns1, E. Van Abel2, C. Bryan1
1Oak Ridge National Laboratory, Oak Ridge, TN
2SHINE Medical Technologies, Monona, WI

Sept 3, 2015
Mo-99 2015 Topical Meeting
Boston, MA

Sponsored by the US. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization (M3) for Mo-99 Production (National Laboratory Support Work Package) in cooperation with SHINE Medical Technologies

This presentation contains no proprietary or business-sensitive information of any type; all over-achieving terrorists will be disappointed in the lack of personal, financial, geo-political, military, and even earnest technical information. Deal with it.
Scope of ORNL Laboratory Corrosion Task

- Examine corrosion properties of candidate materials to be used in the target solution vessel (zirconium alloys) and support piping (various stainless steels)

- Minimize risk and bound corrosion expectations via
 - extensive laboratory corrosion testing using *depleted* uranyl sulfate environments
 - more limited testing of materials under gamma irradiation conditions (radiolysis) at the HFIR/GIF

- Ultimately, provide information to support various approvals (e.g., NRC) to operate the SHINE system
 - information developed is further supported by irradiation test campaign at ORNL (K. Leonard, W. Geringer)
Corrosion Assessment Activities to Date

- Comprehensive literature review (Homogenous Reactor experience)

- Extensive matrix for coupon exposures in a wide range of environments
 - simple immersion
 - galvanic couples
 - vibratory horn
 - SCC – U-bends
 - SCC – slow strain rate
 - electrochemical polarization

- Preliminary HFIR/GIF exposures
 - establish handling protocols
 - initial experiments

 ▫ 70-280 g dU/L
 ▫ ambient to 94°C fluid temp
 ▫ to 1.0 M excess H₂SO₄
 ▫ immersion and vapor
 ▫ to 0.25M HNO₃
 ▫ stagnant to rapid fluid velocity
 ▫ to 50 wppm iodine

 typically 50% as KIO₃ and 50% as KI
Test Materials

• Zr-4 and a Zr-2.5Nb alloy are primary candidates for the Target Solution Vessel (TSV) based on expected radiation damage characteristics

• Several stainless steels under consideration for support piping

 - 316L austenitic stainless steel ↔ Workhorse stainless with known pedigree and good resistance to expected environments
 - 2304 duplex stainless steel ↔ Expensive, high alloy stainless steel with ~ 2x strength of 316L
 - 304L stainless steel ↔ Less expensive and perhaps more readily available than 316L, but has reduced corrosion resistance
 - 17-4 PH stainless steel ↔ Considered as a candidate alloy for compression fittings to join pipes
Current Testing

Immersion Testing
- Recirculator for condensers
- "Lid" slows evaporation
- Constant temperature bath

Vibratory Horn
- Ultrasonic transducer (piezoelectric crystal) inside
- Vibratory horn (probe)
- Specimen mounts on horn tip
- Flats permit tightening of specimen onto horn tip
- Diameter: 16 mm, 14.3 mm
- Hollow shank to reduce weight, typically h = 3-5 mm

Galvanic Testing
- 316 SS threaded bolt
- Teflon spacer
- Pair of specimens (one Zr, one stainless)
- 316 SS flat washer
- Teflon shoulder washer
- 316 SS lock washer

*Oak Ridge National Laboratory
Managed by UT-Battelle for the U.S. Department of Energy*
Stress Corrosion Cracking – U-bend testing

- expose pairs of U-bends in each solution:
 - fully immersed
 - bend in vapor space
 - 10 days 80°C, 10 days 94°C

17-4 PH
140 g dU/L + 0.1 M excess H₂SO₄
after 10 days at 80-81°C
Stress Corrosion Cracking – slow strain rate testing
Electrochemical Polarization – rotating disk electrodes
Corrosion Testing Under Irradiation Conditions – HFIR/GIF exposures

- Radiolysis-induced changes in chemistry and electrochemistry
 - formation of predominantly \(H_2, O_2, \) and \(H_2O_2 \) and related radicals

- Little influence of irradiation on corrosion performance in HRE-1 and -2, but the SHINE environment may be somewhat different

- Gamma Irradiation Facility at the High Flux Isotope Reactor can be used to exposure test materials and solutions of interest

Flux trap of spent fuel assembly
Loading Assembly into Pool within Spent Fuel Bundle

lowering package into place

several spent fuel bundles in the pool

“freshest” fuel bundle has the blue glow
Initial Test Details

- Top tier of specimens exposed in vapor, bottom tier immersed

- Solution was $140 \text{ g dU/L } + 0.1 \text{ M } \text{H}_2\text{SO}_4$ (pH ≈ 0.5)

- Two vessels exposed, straddling the expected peak position for gamma irradiation intensity

- One vessel contained 316L, 2304, and 17-4 PH; the other contained 316L, Zr-4, and Zr-2.5Nb

- One week exposure, average solution temperature $\sim 70^\circ\text{C}$ at a high dose (consistent with several months of SHINE process exposure)
Initial Test Results

- All specimen surfaces free of changes in surface roughness

- Identical to other exposures, Zr alloys exhibit light golden brown film; 316L and 2304 unchanged; 17-4 PH has dull luster

- Corrosion rates based on weight change suggest slight increase for most alloys

<table>
<thead>
<tr>
<th></th>
<th>--- immersion position ---</th>
<th>--- vapor position ---</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no radiolysis</td>
<td>potential radiolysis</td>
</tr>
<tr>
<td>316L</td>
<td>< 0.05</td>
<td>0.21-0.27</td>
</tr>
<tr>
<td>2304</td>
<td>< 0.05</td>
<td>0.37</td>
</tr>
<tr>
<td>17-4 PH</td>
<td>< 0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>Zr-4</td>
<td>< 0.05</td>
<td>0.14</td>
</tr>
<tr>
<td>Zr-Nb</td>
<td>< 0.05</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Corrosion rates in mil/y
In prototypic conditions as well as some “off-normal” environments, all candidate alloys exhibit remarkable passivity:
- corrosion rates < 0.1 mil/y (with only modest exception)
- no cracking
- not sensitive to velocity
- not sensitive to localized corrosion
- radiolysis may very slightly increase corrosion

More story here

Similar report will be generated for FY15