Powder Metallurgy Fabrication of Molybdenum Target Materials and Assemblies

R. A. Lowden

R. R. Lowden

D. L. Erdman, III

C. Bryan

Oak Ridge National Laboratory

Mo-99 Topical Meeting Boston, MA September 3, 2015

Target Disks and Assemblies for the Accelerator Production of Mo-99 Are Being Fabricated Employing Powder Metallurgy Approaches

The goals of this effort:

- Understand the requirements for and fabrication of molybdenum target disks that will be used in the accelerator production of Mo-99.
- Develop a process for fabricating accelerator target disks with a density of 90% or greater and acceptable thermomechanical properties.
- Identify characteristics that affect the dissolution rate of target disks.
- Assist in developing a process for recycling isotopically-enriched molybdenum.

The Current Target Is a 29 x 0.5 mm Disk

Target Disk and Holder Specifications Are Quite Stringent

Powder Metallurgy (PM) Is Being Evaluated for the Production of Accelerator Targets

- Powder Metallurgy is a method of producing components by pressing or shaping metal powders which are subsequently heated to create a dense, coherent object.
- Advantages
 - Near-net shape
 - No waste
 - Controlled porosity
- Disadvantages
 - High cost of tooling and powder
 - Powders can be difficult to handle
 - Geometric and size limitations
 - Density variations

Most If Not All Molybdenum Powders Were Pressed and Sintered to the Desired Density

Powder	Compact Press.	%TD	Sintering (°C/h)	%TD (sintered)	Open Porosity	Diameter (mm)	Thickness (mm)	Shrinkage (%)		Bow
	(ksi)	(green)	(6/11)	(Sintereu)	Polosity	(111111)	(111111)	D	t	
33 mm disks	33 mm disks									
NPA	100	80	1500/1	90	NM	32.0	0.59	3.9	1.7	mixed
NPA	100	80	1550/1	91	NM	NM	NM	NM	NM	severe
NPA	150	85	1500/1	92.5	NM	32.5	0.56	2.0	0	unknown
NPA	200	87	1500/1	94	NM	32.8	0.53	1.0	0	unknown
NPA	100/150	81	1200/1	91	NM	32.6	0.54	0.9	3.2	unknown
NPA	100/200	86	1400/1	93	NM	32.6	0.52	1.2	0	unknown
29 mm disks	;				,	•				
NPA	100	80	1500/1	89	10	29.2	0.50 ± 0.03	3.4	4.1	mixed
NPA	100	80	1550/1	93	4	29.0	0.50 ± 0.02	4.0	1.9	mixed
EM-NM3	100	43	1500/1	98	0	22.9	0.76	24.6	25	severe
LB1	100	65	1500/1	89	5	27.6	0.57 ± 0.02	8.4	9.6	moderate
LB1	100	65	1550/1	91	< 1	27.4	0.56 ± 0.02	9.4	11.4	severe
LB1-M	100	65	1500/1	88	~ 5	27.7	0.58 ± 0.03	8.3	7.3	moderate
LB1-S	100	67.5	1500/1	87	~ 9	28.0	0.56 ± 0.02	7.2	7.8	severe

However, most if not all disks were severely distorted, i.e. warped and bowed.

Powder Must Flow to Uniformly Fill the Die Cavity

Molybdenum Supplier	Grade	Purity (% Mo)	Max. Oxygen (ppm)	Particle Size	BET (m²/g)	Hall Flow (sec/50 g)
Climax Molybdenum	EM-NM3	99.9	1400	0.7 – 1.5 μm	2.83	No flow
Climax Molybdenum	NPA	99.95	1000	4.0 – 4.8 μm	0.45	No flow
Climax Molybdenum	PM	99.9	2000	-200/+325 mesh (spray-dried)	NM	< 45
Large-batch reduction	LB1	NM	> 5000	4.8 ± 1.4 μm	0.46	No flow

NM = not measured

Reduced Powder Can be Milled and Spray-Dried to Produce "Flow-able" Feedstock

Powder Characteristics and Compaction Influence Sintering Behavior

A Factor That Affects Dissolution Rate is Open Porosity

The Addition of Lubricants Improves Uniformity and Reproducibility

EBS Lube	Comp.	Green Density	Sintered Density/ Open	Average Diameter	Thickness (mm)			
(wt%)	(MPa)	(%)	Porosity (%)	(mm)	Average	All Disks	Each Disk	
0.25	850	79	90/5	29.3	0.52	± 0.002	± 0.006	
0.50	875	79	90/5	29.3	0.52	± 0.005	± 0.010	
0.75	900	80	90/5	29.4	0.52	± 0.004	± 0.010	
1.00	1000	80	90/5	29.4	0.51	± 0.003	± 0.010	

3.1 g of SD powder pressed at given pressure and sintered at 1600°C for 4 h

Shrinkage of ~ 4% in all directions!

Target Disks Will be Subject to Non-Uniform Heating During the Irradiation Process

Disk #14

Thermal Conductivity of the PM Mo Was ~ 85% of the Values Measured for Dense Molybdenum

Results for 90% dense Mo with 5% open porosity. Values above 600°C for the PM Mo were estimated by comparison to trends for dense material.

Thermal Expansion Was Identical to the Values Measured for Dense Molybdenum Sheet Product

Results for 90% dense Mo with 5% open porosity.

The Hot Center Expands While the Cold Periphery is Constrained Resulting in Non-Uniform Stress Across the Disk

Resulting stress:

Mechanical Properties Were Measured Employing Two Flexure Test techniques

Four-Point Flexure

Biaxial Flexure

It was assumed the PM Mo would be brittle.

The PM Mo Target Materials Exhibited "Ductile" Behavior

Tensile Properties Are Being Measured Using Sub-Scale "SS-3" Specimens

- Modulus (E)*
- Yield stress (YS)
- Ultimate stress (US)
- Total elongation (TE)
- Uniform elongation (UE)
- * Due to small size of specimens, measured modulus (E) is not representative of true modulus.

The small size of the SS-3 allows test specimens to be cut from target disks.

Tensile Properties Are Being Measured to 1000°C in an Inert Atmosphere

- 0.5 mm/min loading rate
- Load versus crosshead displacement (no extensometer)
- Test temperatures: room, 525°C, 725°C, 900°C and 1000°C
- > 20°C/min heating rate
- ~ 10°C/min cooling rate
- Flowing mixture of argon with 4% hydrogen

The PM Mo Target Material Behaves Much Like Recrystallized Sheet

0.2% Off-Set or Yield Stress (YS)

Again, the PM Mo Target Material Behaves Much Like Recrystallized Sheet

Ultimate Stress (US)

Total Elongation* Is Used to Asses "Ductility"

^{*} A measure of how much the specimen stretches before it breaks.

The PM Mo Does Not Exhibit Traditional Ductile Behavior – No Necking

Thermomechanical Models Predict Disk Distortion Due to the Thermal Gradients

Total Deformation
Type: Total Deformation
Unit: mm

Time: 1

4/22/2014 2:58 PM

0.037209

0.031019

0.027924 0.024829

0.021733 0.018638

0.015543 0.012448 0.0093526

0.0062574

6.7011e-5 Min

The Center of Target Disks Were Heated in an Inert Atmosphere Using a 350W Laser

Observed color was used to determine temperature. Disks achieved temperatures of ~ 950° to 1050°C.

All Disks Were Distorted After Heating

Specimen	Power (W)	Pulse (msec)	Frequenc y (Hz)	Time (sec)	Δ (μm)
SM-1	92	0.5	100	30	+18
SM-2	120	0.5	100	30	+70
SM-3	200	1	50	60	+60
PMA-28	120	0.5	100	30	+6
PMA-29	193	1	50	30	+10
PMA-30	193	1	50	60	+16
PMA5-22	200	1	50	75	+17
PMA-26	200	1	50	150	+20
PMA5-21	250	1.5	50	30	+40

 Δ = increase in bow, SM = sheet metal

Target Materials Were Heat Treated to Simulate "Long-Term" Exposure in an Accelerator

Center temperature of disks, typ.

6.5 days (156 h) at 1000°C in flowing argon

Room Temperature Properties Were Degraded by the Heat Treatment

Mo sheet

MO361, 99.95%
 Mo, as-rolled,
 0.65 mm thick

S25

Starck SD with0.25 wt% EBS,88%TD and 7%open porosity

• S50

Starck SD with0.5 wt% EBS,90%TD and 5%open porosity

ALL PM materials exhibited brittle behavior with TE < 1%.

The Powder Metallurgy Fabrication of Target Disks for the Accelerator Production of Mo-99 Continues to Progress

- Powder metallurgy can be used to produce accelerator target disks with minimal waste.
- All molybdenum powders can be pressed and sintered to densities greater than or equal to 90% of theoretical; however, a combination of lubricated, spray-dried powders and good tooling has been used to produce the most uniform disks.
- Thermophysical and thermomechanical properties of the powder metallurgy Mo materials have been measured. Room and elevated temperature mechanical properties are similar to recrystallized Mo sheet.
- ALL disks bowed and/or warped upon spot heating with a laser.
- The mechanical properties of the PM Mo are degraded by long-term exposure to accelerator conditions.
- Sub-scale, 12 mm x 1 mm disks are to be included in an accelerator test to evaluate in-process performance.

What's next?

Target Assemblies Are To Be Fabricated Employing 3D Selective Laser Sintering

As-Reduced And Spray-Dried Powders Are Being Spheroidized for Use in Printing Targets

Who Says, "You Can't Polish a Horse Turd?"

Any Questions or Comments?