Chemical Processing for a Non-uranium Production of $^{99}\text{Mo}/^{99m}\text{Tc}$

P. Tkac, K.E. Wardle, M.A Brown, A. Momen, D.A. Rotsch, J.M Copple, S.D. Chemerisov, R. Gromov, G.F. Vandegrift, Nuclear Chemical Engineering Department Nuclear Engineering Division Argonne National Laboratory, 9700 S. Cass Ave., 60439 Argonne – USA

ABSTRACT

A non-uranium pathway for production of hundreds of curies of $^{99}\text{Mo}/^{99m}\text{Tc}$ isotope requires enriched ^{98}Mo or ^{100}Mo material. An estimated cost for >95% enriched $^{98/100}\text{Mo}$ is about $1,000/g. In order to meet supply demands, kilogram quantities are required. Due to the high cost for the enriched target material, it is important that potential manufacturers have a means to efficiently recycle the enriched Mo into new targets as part of the complete production scheme. Impurities present in the enriched material, and those introduced during the post-irradiation processing, or recycling, need to be closely monitored. Experimental results on irradiation of Mo targets, dissolution studies to optimize the target properties, and a solvent extraction approach to recycle enriched Mo material will be presented.