

Australian Government

Waste Forms for the Immobilization of Uranium Waste Streams from Mo-99 Production

E.R. Vance, D.J. Gregg, K. Olufson, J. Veliscek-Carolan, I. Watson, N. Webb, T. McLeod, M. Jovanovic, I. Kurlapski, C. Grant, T. Palmer, K. Lu, Z. Aly and N. Scales

ANSTO, Australian Nuclear Science and Technology Organisation

Funded by NNSA with work being done by NESA and ANSTO

Alkaline Process: Waste streams

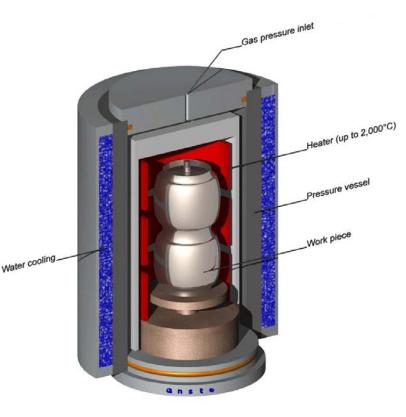
- 1: UOx + Na/Fe/Ni/Cr oxides + FP
- 2: As in 1, with majority of U extracted
- 3: AI_2O_3 ion exchanger + FP

- All more active than LLW, typically 10¹² Bq/L
- For conservatism chose mainly HLW waste forms and HLW immobilisation criteria

Waste Forms

- Mix the waste with selected additives to make solid material that is relatively insoluble in water
- Major HLW waste forms that can immobilise the full range of FPs + actinides are glass, synroc, and alumina-based ceramics.
- Long-lived in Nature
- Cementitious products for less active wastes

Waste Form Design Strategy


- Maximize waste loading to increase cost savings
 - by utilizing waste components to advantage via 30 years experience in WF design
- Optimize durability to lower environmental risk
 by incorporating waste in very durable mineral analog phases & high durability glasses
- Increase flexibility to accommodate process and waste variations
 via in built chemical buffering & multiphase waste forms
- Integrate optimal consolidation technology
 - process should place minimal constraints on the chemistry of the waste form and reduce or eliminate off-gas emissions

Integrated waste form and process technology to achieve maximum benefits

Making and characterizing waste forms

- Hot isostatic pressing for waste form production mainly
- Microstructure and leaching
- Radiation effects would be minimal in these HLW forms and mechanical properties never an issue
- Simulated FPs and natural U

Leaching and characterization of waste streams 1-3

- Substituted ~0.2 wt% of FPs
- XRD, SEM
- MCC-1 ~1cm squares in ~25 mL of water
- PCT 1g 75-150 micron particles/10 mL of water
- Thermal stability and compressive strength

Waste forms and scaleup

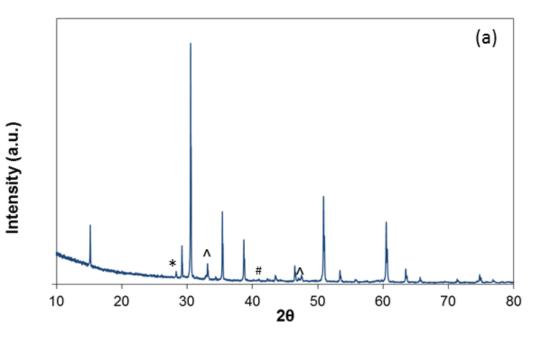
- Many ceramics, glasses, glassceramics, geopolymer cements at ~50g scale
- Scaled up to a few kg those samples which passed downselect criteriaperformance, processing, preconceptual engineering

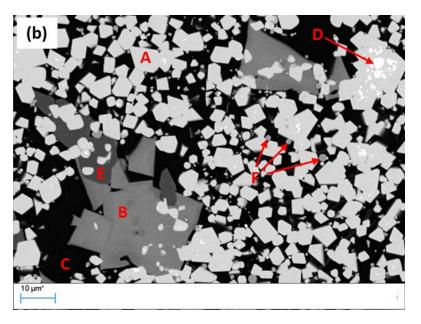


ANSTO Synroc HIP Treatment Technology

Waste Stream 1 (WS1)

- Fe₂O₃ (10); Cr₂O₃ (2.2); NiO (1.3); Al₂O₃ (1.9); Na₂U₂O₇ (72.5); UO₂(10.9) + FP oxides (1.2)
- Main waste forms were pyrochlore-structured $CaUTi_2O_7$ (synroc group) + 10 or 20 wt% glass additives (U and FP hosts, additional thermal conductivity above T_g)


WS1 Wasteform



HIP Canister properties				
	unHIPed	HIPed		
Diameter (mm)	86.7	70.4		
Height (mm)	122.2	67.8		
Mass of sealed can (g)	1253.0	1254.4		
Can volume (cm ³)	675	210		
Sample density (g/cm ³)	1.52	4.83		
Mass of can contents (g)	862.6			
Volume reduction (%)	69%			

XRD and Microstructure

• Leach results OK

Australian Government

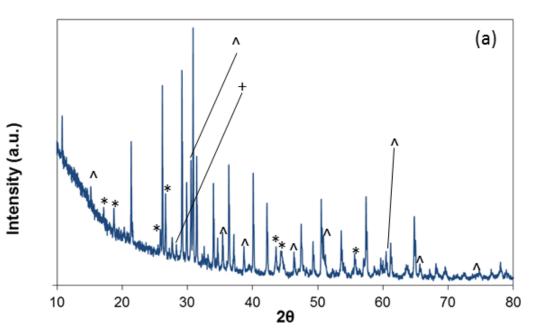
Waste Stream 2 (WS2)

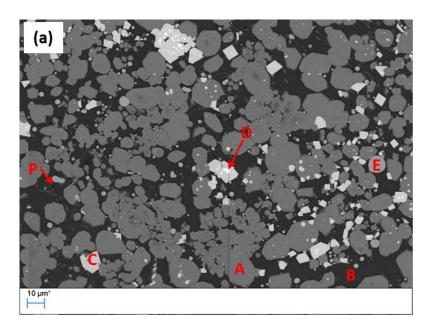
- Composition: Fe₂O₃ (33.7); Cr₂O₃ (5.9); NiO(3.6); Al₂O₃ (16.6); Na₂O (3.3), UO₃ (30.2); UO₂ (5.3): FP (1.5)
- Targeted pyrochlore CaUTi₂O₇ + TiO₂ ceramic, HIPed at 1250°C/100MPa.
- Generally good properties but high Cs leaching due to CsAlTiO₄ formation

Pyrochlore + 20% glass for WS2

HIP Canister properties				
	unHIPed	HIPed		
Diameter (mm)	86.8	70.6		
Height (mm)	122.1	83.0		
Mass of sealed can (g)	1372.97	1373.7		
Can volume (cm ³)	675	295		
Sample density (g/cm ³)	1.72	3.7		
Mass of can contents (g)	979.6			
Volume reduction (%)	56			

 Adjusted composition: CaUTi₂O₇ + 20% glass, same HIP conditions

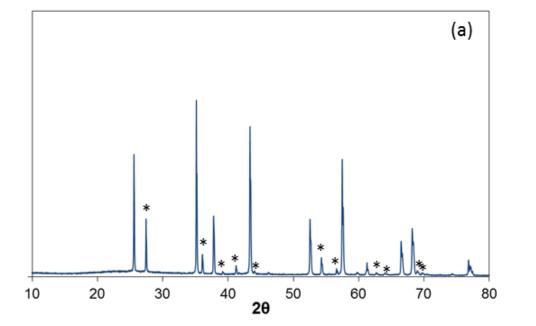




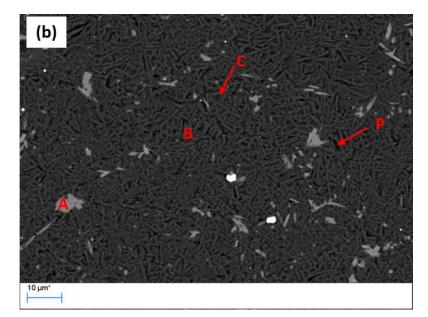
Pyrochlore + glass for WS2

- Microstructure- major pyrochlore, minor perovskite (CaTiO₃), minor glass, minor UO₂, trace loveringite, FPbearing alloys
- U and FPs located in the different phases
- Excellent leaching behaviour (all PCT rates <0.2 g.m⁻².day

Waste stream 3

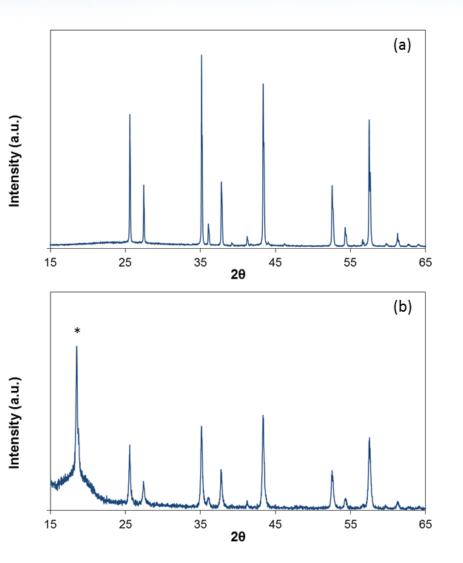

HIP Canister properties				
	unHIPed	HIPed		
Diameter (mm)	86.6	62.5		
Height (mm)	122.6	71.4		
Mass of sealed can (g)	938.70	939.60		
Can volume (cm ³)	625	238		
Sample density (g/cm ³)	1.0	3.33		
Mass of can contents (g)	558.0			
Volume reduction (%)	62			

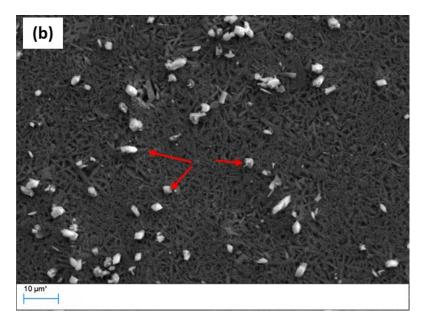
- 99% + alumina ion exchanger, rest FPs
- Waste form target: Alumina + glass & TiO₂



Alumina-glass-rutile waste form for WS3

- Microstructure picture showing designated phases + some FPs in metal alloys
- FPs in the targeted phases

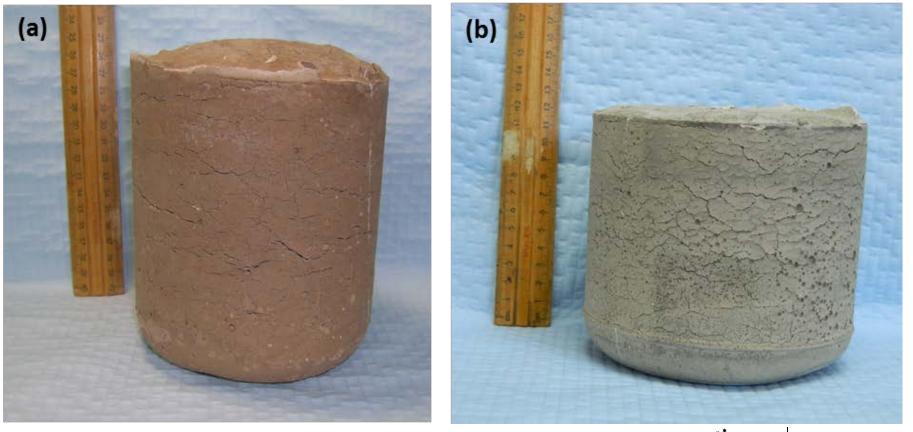

Intensity (a.u.)


PCT leach rates <0.2 g.m⁻².day at 90°C

 Norstrandite alteration layer covered surface after 90 days

Alumina-glass-rutile waste form for WS3

• Larger HIP can containing 6.3 kg of waste form gave broadly similar results


Geopolymer for WS3

- Mixed metakaolin and sodium silicate solution with Na/Al=1 and Si/Al=2 with 40 wt.% WS3
- Small-scale experiments using strong agitation and exit of air bubbles (~80g) looked good and could heat to 500°C without fracture
- At ~3kg level could had to pour into containermore water necessary

WS3 –Large sample

• Curing at 90-130°C plus 500°C

- Compressive strength only ~3MPa
- But passed PCT (Na < 1g.m⁻².day) by a factor of ~20 and ANS 16.1 tests easily (for Na vs logarithmic "pass mark" of 6).
- Leaching mainly due to diffusion of non-network ions in pore water
- Because the waste is an ion exchanger, very low FP apparent leaching but Na results real
- Suspect limited stability for real waste

Conclusion and Final Remarks

- Ceramic and glass-ceramic waste forms are preferred with "economic" waste loadings of ~30 - 70 wt %.
- Large volume reduction ~ 50% 70%
- HIPing flexible technology suitable for several tonne quantities of waste and can be applied to all waste streams
- Geopolymers less durable and prone to radiation effects
- ANSTO in detailed engineering stage for a HIP facility to treat its own ILW from Mo-99 production
- Building to commence in 2017

Acknowledgement

 This project was funded in part by the U.S. Department of Energy, National Nuclear Security Administration, through UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.

