

P. TKAC, K.E. WARDLE, M.A. BROWN, A. MOMEN, D.A. ROTSCH, J.M. COPPLE, S.D. CHEMERISOV, R. GROMOV, G.F. VANDEGRIFT

September 11-14, 2016 2016 Mo-99 Topical Meeting

WHAT ARE THE ALTERNATIVES?

Reactor production on Mo target

- Enriched Mo-100 is available for ~\$1000 per gram for kg quantities!!!
- Different generator technology is required

ADVANTAGES AND DISADVANTAGES OF ALTERNATIVES

- Advantages
 - Lower start-up costs
 - Commercial availability
 - Fast post-irradiation processing
 - Easier licensing procedure
 - Less costly waste disposal (no fission products)
- Disadvantages
 - Lower production yields
 - Use of enriched Mo targets
 - Lower specific activity, which leads to requiring a different generator technology
- Use of commercial reactors for production of Mo-99 using Mo98(n,γ)Mo99
- Electron accelerator technology using Mo100(γ,n)Mo99
- Availability of medical cyclotrons for direct production of Tc-99m world-wide
 - Up to 70Ci of Tc-99m can be produced in two 6-h irradiations (500µA and 24MeV)
 - Short half-life requires very quick post-irradiation processing

WORK AT ARGONNE

- Radiation studies
- Irradiation and processing of Mo targets using an electron linac
- Dissolution studies to optimize Mo target properties
- Large-scale dissolution studies with up to 600g of Mo
- Recycle of enriched Mo-98 or Mo-100 material

IRRADIATIONS PERFORMED IN FY16

- The goal was to determine if Sn-stabilized peroxide can affect the radiochemical purity of the Tc/Mo product
 - Four UHP natural Mo targets irradiated
 - One 97.4% Mo-100 enriched target irradiated

Mo, g	Activity at EOB, mCi						R _f =0.9±0.1			H ₂ O ₂ used,
	⁹⁹ Mo	⁹⁰ Mo	^{93m} Mo	^{95m} Nb	⁹⁵ Nb	⁹⁶ Nb	⁹⁹ Mo	^{99m} Tc	$\Pi_2 O_2$ used	mL/g
UHP, 1.13	16.5	2.8	ND	0.79	0.11	2.34	91.3%	89.5%	30% NS	13.3
UHP, 1.05	15.3	1.8	0.01	0.79	0.07	1.98	99.7%	96.5%	50% Sn-stab	9.5
UHP, 1.06	13.5	2.2	ND	0.72	0.06	1.89	99.5%	95.8%	50% Sn-stab	18.9
UHP, 1.03	16.1	2.5	ND	0.83	0.07	2.22	99.3%	94.6%	30% NS	9.7
¹⁰⁰ Mo, 2.09	123.2	ND	0.04	0.05	ND	ND	98.4%	98.3%	50% Sn-stab	31

SMALL-SCALE DISSOLUTIONS – ORNL DISKS

AHM Recycled

75-150µm AHM reduced to 91±25µm Mo

150-400µm AHM reduced to 204±37µm Mo

MoO₃ Recycled

75-150µm MoO₃ reduced to 125-155µm Mo

Agglomerates of 1-10µm Mo particles

Laser-melt 3D printed Mo disks

- Disks broke down into small pieces
- Wire-like particles
- Longer diss. time vs. sintered
- Opposite trend on open porosity

SMALL-SCALE DISSOLUTIONS 29MM DISKS-ORNL DISKS

- ~29.5mm disks
- 9-24g per disk
- Very good dissolution rates for up to 4mm thick disks

- 29x0.5mm disks
- 87-93% theoretical density

LARGE-SCALE DISSOLUTION 600G OF SINTERED MO DISKS

Disks, mm	H ₂ O ₂ (L)	Water condensed from diss., L	Diss. time, h	Evaporation time, h	Total time, h	Total diss. rate, g/min
26x1	9.5	5.4	2.5	1.5	4.5	2.2
26x1	9.0	5.9	2.75	1	4.0	2.5
26x1	6.5	4.3	2.0	1.5	3.8	2.7
29.5x0.5	6.8	4.7	1.8	0	2.3	4.42

Last 26x1mm dissolution – 900mL of water condensed in 15min

Reaction heat: ~2.6kW

Chiller used: 1.7kW cooling capacity at 20°C

LARGE-SCALE DISSOLUTION OF SINTERED MO DISKS

MO RECYCLE PROCESS

SPENT GENERATOR SOLUTION

- Need to be recycled to reuse enriched Mo-98, Mo-100 material for economic production
- Generator solution contains ~2kg of K per kg of Mo

REQUIREMENTS

- Recycling capacity of up to 400g/day
- High recovery yield
- No introduction of other elements that can lead to side reaction products
- Recycled material ≤100mg-K/kg-Mo separation factor required SF=1×10⁴
- Automated process

MO RECYCLE PROCESS – SOLVENT EXTRACTION

PLASTIC 3D PRINTED COUNTERCURRENT CENTRIFUGAL CONTACTOR

Spent solvent

COUNTER CURRENT CENTRIFUGAL CONTACTORS

RECOVERY OF MO BY SOLVENT EXTRACTION BACK END PROCESSES

AHM particle size distribution

~50% -40/+100 mesh
~40% -100/+200 mesh
~10% -200 mesh

400-149μm 149-74μm <74μm

RECOVERY OF MO BY SOLVENT EXTRACTION BACK END PROCESSES

	~5M HCl	strip	Ammonium molybdate				
	ppm (mg/kg-Mo)						
К	4.2E5	193	< 41				
Na	2.6E3	2.7E3	< 43				
Р	2.5E3	2.7E3	< 111				
Mg	70	133	< 19				
AI	79	154	< 35				
Ti	27	59	17				
Fe	< 66	96	< 42				
As	31	20	71				
Zr	< 0.76	10	20				
Nb	1.7	1.6	1.6				
Cd	1.7E3	1.6E3	1.4E3				
Sn	1.2E3	N/A	1.2E3				
Те	97	71	79				
W	3.2E3	3.0E3	2.2E3				

COMPLEXITY OF STRIPPING

pH 1

CONCLUSIONS

-

Dissolution rates of disks from recycled Mo material depends on Mo particle size Mo reduced from AHM has good properties for sintered disks

Mo reduced from MoO_3 lead to fine Mo particles – affects dissolution rate

 3D printed disks in early stage of development show different dissolution characteristics slower dissolution vs. sintered Mo disks

opposite trend of dissolution rate on open porosity

- Developed process and equipment for quick dissolution of up to 600g of sintered Mo disks

total processing time for 600g of Mo is ~4hrs hot cell mock up

- Developed an efficient recycle process for enriched Mo material with high recovery yields

automated solvent extraction using 3D-printed centrifugal contactors good particle size distribution of recovered AHM

ACKNOWLEDGMENTS

FUNDING

Work supported by the U.S. Department of Energy, National Nuclear Security Administration's (NNSA's) Office of Defense Nuclear Nonproliferation, under Contract DE-AC02-06CH11357.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

