Powder Metallurgy
Molybdenum Accelerator Target Materials and Assemblies

R. A. Lowden
R. R. Lowden
J. O. Kiggans, Jr.
C. Bryan

Oak Ridge National Laboratory

Mo-99 Topical Meeting
St. Louis, MO
September 14, 2016
Target Disks and Assemblies for NorthStar’s Accelerator Production of Mo-99 Are Being Fabricated Employing Powder Metallurgy Techniques

The goals of this effort:

• Understand the requirements for and fabrication of molybdenum target disks and assemblies that will be used in the accelerator production of Mo-99.

• Develop a process for fabricating accelerator target disks and other structural components with a density of 90% or greater and acceptable thermomechanical properties.

• Identify characteristics that affect the dissolution rate of target materials.

• Assist in developing a process for recycling isotopically-enriched molybdenum.
The Proposed Target is a Thin Metal Disk with Quite Stringent Dimensional Tolerances

Target Disk

- **D** = 29.00 mm, +0 µm, -25 µm
 (28.97 – 29.00 mm)
- **t** = 0.500 mm, +8 µm, -0 µm
 (0.500 – 0.508 mm)

Disk Pocket

- **D** = 29.10 mm, +25 µm, -0 µm
 (29.10 – 29.13 mm)
- **t** = 0.533 mm, +25 µm, -0 µm
 (0.533 – 0.558 mm)

Specification does not include values for surface finish, total thickness variation, bow or warp.

NOTE: The average diameter of a strand of human hair is 100 µm.
Target Disks Have Been Fabricated Using Traditional Powder Metallurgy Approaches

- Powder metallurgy has been used to produce accelerator target disks that meet dimensional specifications with minimal waste.
- A combination of lubricated, spray-dried powders and good tooling has been used to produce uniform disks that dissolve quickly.
- Thermophysical and thermomechanical properties of the powder metallurgy Mo materials have been measured.
- The properties and behavior of materials and components after exposure to simulated operational environments are being characterized.
The Hot Center Expands While the Cold Periphery is Constrained Resulting in Non-Uniform Stress and Strain Across the Disk

Thermomechanical Models Predict Disk Distortion Due to the Thermal Gradients

Bowing was verified experimentally.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Power (W)</th>
<th>Pulse (msec)</th>
<th>Frequency (Hz)</th>
<th>Time (sec)</th>
<th>Δ (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-1</td>
<td>92</td>
<td>0.5</td>
<td>100</td>
<td>30</td>
<td>+18</td>
</tr>
<tr>
<td>SM-2</td>
<td>120</td>
<td>0.5</td>
<td>100</td>
<td>30</td>
<td>+70</td>
</tr>
<tr>
<td>SM-3</td>
<td>200</td>
<td>1</td>
<td>50</td>
<td>60</td>
<td>+60</td>
</tr>
<tr>
<td>PMA-28</td>
<td>120</td>
<td>0.5</td>
<td>100</td>
<td>30</td>
<td>+6</td>
</tr>
<tr>
<td>PMA-29</td>
<td>193</td>
<td>1</td>
<td>50</td>
<td>30</td>
<td>+10</td>
</tr>
<tr>
<td>PMA-30</td>
<td>193</td>
<td>1</td>
<td>50</td>
<td>60</td>
<td>+16</td>
</tr>
<tr>
<td>PMA5-22</td>
<td>200</td>
<td>1</td>
<td>50</td>
<td>75</td>
<td>+17</td>
</tr>
<tr>
<td>PMA-26</td>
<td>200</td>
<td>1</td>
<td>50</td>
<td>150</td>
<td>+20</td>
</tr>
<tr>
<td>PMA5-21</td>
<td>250</td>
<td>1.5</td>
<td>50</td>
<td>30</td>
<td>+40</td>
</tr>
</tbody>
</table>

Δ = increase in bow, SM = sheet metal
Targets Assemblies That Accommodate Thermally Induced Stresses and Strains Could Be Designed and Fabricated Employing Additive Manufacturing

Notional 3D target design printed in stainless steel
Dense, Spherical Powder is Required for Additive Manufacturing

Notional 3D target design printed in stainless steel
Reduced Powder Is Milled and Spray-Dried to Produce “Flow-able” Feedstock
Spray-Dried Powders Can Be Spheroidized for Use in the Additive Manufacture of Targets

55 ± 13 µm
(-200/+325 mesh)

TEKNA 15 kW Plasma Spheroidization System

48 ± 9 µm

Target powder particle size:
+15/-45 µm (30 ± 15 µm)
As-Reduced Trioxide Powder Has Also Been Spheroidized

126 ± 15 um
(-100/+200 mesh)
96 ± 34 um
(-140/+325 mesh)

51 ± 20 um
41 ± 14 um

TEKNA 15 kW Plasma Spheroidization System
Trioxide and Its Reduction Product Are Friable and Produce Unwanted Fines During Processing

Material to produce 1 target disk.

- trioxide (4.5 g)
- reduced (3 g)
- spheroidized (3 g)
ANL is Developing a Solvent Extraction Process for the Recovery/Recycle of Mo

Ammonium Heptamolybdate Tetrahydrate - $\left(\text{NH}_4\right)_6\text{Mo}_7\text{O}_{24} \cdot 4\text{H}_2\text{O}$ or AHMTH
AHMTH is Readily Reduced and Spheroidized

AHMTH is much more robust than trioxide resulting in significantly fewer fine particles!
Shrinkage During Conversion from AHMTH to Metal is Significant

AHMTH (5.5 g)
reduced (3 g)
spheroidized (3 g)

Material to produce 1 target disk.
Targets & Assemblies Are Being Fabricated Employing a Selective Laser Melt Technique

Notional 3D target design printed in stainless steel
Laser Melt Processing of Molybdenum is Quite Challenging

<table>
<thead>
<tr>
<th>Material</th>
<th>Melting Point (°C)</th>
<th>Thermal Conductivity (W/m-K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanium 6Al/4V</td>
<td>1600 – 1660</td>
<td>7</td>
</tr>
<tr>
<td>316 Stainless</td>
<td>1370 – 1400</td>
<td>16</td>
</tr>
<tr>
<td>Inconel 625</td>
<td>1290 – 1350</td>
<td>10</td>
</tr>
<tr>
<td>Inconel 718</td>
<td>1260 - 1340</td>
<td>11</td>
</tr>
<tr>
<td>Tool Steels</td>
<td>~ 1400</td>
<td>Up to ~ 25</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>2620</td>
<td>140</td>
</tr>
</tbody>
</table>
Unique Processing Capability Was Established to Examine SLM AM of Molybdenum

Renishaw AM250 400 watt selective laser melting system

Reduced build volume insert for small-scale experiments
A Laser is Used to Selectively Melt Successive Layers of Metal Powder

Primary SLM Process Variables
- Point Distance (μm)
- Exposure Time (μs)
- Power (W)
- Hatch Distance (μm)
- Layer Thickness (μm)
- Powder Particle Size (μm)

Laser Spot = 130 μm

Melt Pool is Dependent Upon Exposure Time and Power
Scan or Build Strategy Influences Critical Features Such as Porosity, Microstructure, and Surface Roughness

There are ~ 180 different process variables associated with SLM AM build strategies.

(Note: 1st Mo run was very entertaining!)
A Set of Experiments Was Conducted to Develop an Understanding of the Primary SLM Process Variables for Molybdenum

Independent Variables
- Spot Distance: 50, 75 and 100 µm
- Hash Distance: 50, 75, and 100 µm
- Exposure time: 200, 300 and 400 µs

Fixed
- Power: 400 watts
- Spot size: 150 µm (130 µm)
- Powder layer: 30 µm
- Particle size: 30 ± 15 µm (TEKNA Mo45)

Dependent Variables
- Density (88 to 95%)
- Open porosity (4 to ~ 10%)
- Thickness
- Weight
- Width

17 sets of independent variables including 3 repetitions of the center point

Test specimen: 10 x 10 x ~ 1 mm coupon
Once the Study Was Complete, Emphasis Switched to Fabricating Representative Shapes

Build parameters, part orientation and process atmosphere are being explored and optimized using 12 and 29 mm diameter disks of different thicknesses.
Build “Resolution” is Also Being Evaluated

Blanks and net-shape test specimens are being fabricated for characterization of microstructure and testing material properties.

Natural Mo - 91% dense with 8.5% open porosity

~ 0.5 x 1 mm lettering

1 x 1 mm groove

Low-density support structures

Build plate

10 mm
Summary

- Target disks that meet specification and dissolve quickly have been produced employing traditional “press and sinter” powder metallurgy techniques.

- Laser melt additive manufacturing is being examined for the fabrication of molybdenum target materials, components and assemblies.

- To minimize waste and processing steps, spherical powder for AM is being produced directly from compounds being evaluated for the recycle/recovery of Mo from spent solutions.

- SLM AM materials with desired densities have been produced, the properties and behavior of which are now being investigated.