Perspectives on the Reliable Supply of Molybdenum-99
Cardinal Health
Nuclear Pharmacy Services

David Pellicciarini
September 13, 2016
Agenda

• Company Overview
• Supply Chain
• Perspectives
Speaker

David Pellicciarini
Vice President,
Pharmacy Safety, Practice and Technical Operations
Cardinal Health Nuclear Pharmacy Services
david.pellicciarini@cardinalhealth.com
Company Overview
Who we are

Over 36,000 employees worldwide

#26 on the Fortune 500

$100B+ annual revenue
Where we are

Corporate HQ = Dublin, OH
Who we serve

Acute
- Health systems, community hospitals and surgery centers

Retail
- Chain and retail-independent pharmacies and other merchants

Physician Offices
- Physician offices and ambulatory care centers

Manufacturer/Supplier
- Manufacturers and suppliers of medical products and pharmaceuticals

Payor
- Government and third party national and regional insurers

Patient
- Patients/consumers in need of medical help or wellness support
Nuclear Pharmacy Services Overview
Cardinal Health Nuclear Pharmacy Services

Nuclear Pharmacy Services produces, dispenses and delivers radiopharmaceuticals throughout the US

Capabilities

- 130 nuclear pharmacies
- 30 PET biomarker manufacturing sites
- Collaborate with industry, trade and patient advocacy groups
- Ancillary products and services
Business overview

We operate a network of nuclear pharmacies and positron emission tomography (PET) biomarker manufacturing facilities that dispense and deliver time-critical, patient-specific radiopharmaceuticals for diagnostic imaging and therapy.

To advance the diagnosis and treatment of disease through the use of radiopharmaceuticals

Support the development of novel pharmaceutical agents and biomarkers

30 facilities

130 pharmacies

Able to reach 95% of U.S. hospitals within three hours

Hospital imaging customers

Cardiology and oncology clinics
Isotopes typically handled by nuclear pharmacies:

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half Life</th>
<th>Isotope</th>
<th>Half Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo-99</td>
<td>66 h</td>
<td>F-18</td>
<td>110 m</td>
</tr>
<tr>
<td>Tc-99m</td>
<td>6 h</td>
<td>N-13</td>
<td>10 m</td>
</tr>
<tr>
<td>I-123</td>
<td>13 h</td>
<td>C-11</td>
<td>20 m</td>
</tr>
<tr>
<td>I-131</td>
<td>8 d</td>
<td>Ge-68</td>
<td>271 d</td>
</tr>
<tr>
<td>Xe-133</td>
<td>5 d</td>
<td>Ga-68</td>
<td>68 m</td>
</tr>
<tr>
<td>In-111</td>
<td>2.8 d</td>
<td>Ra-223</td>
<td>11 d</td>
</tr>
<tr>
<td>Ti-201</td>
<td>3 d</td>
<td>Sm-153</td>
<td>46 h</td>
</tr>
<tr>
<td>Ga-67</td>
<td>3.3 d</td>
<td>Others</td>
<td>vary</td>
</tr>
</tbody>
</table>
Tc-99m based radiopharmaceuticals

- NaTcO₄
- MDP
- DTPA
- Exametazine
- Mebrofenin
- Bicisate
- Disofenin
- MAA
- Mertiatide
- Oxidronate
- Pyrophosphate
- Sestamibi
- Succimer
- Sulfur colloid
- Tetrofosmin
- Tilmanocept
- […]

Mo-99 / Tc-99m
Supply Chain
Typical Day at a Nuclear Pharmacy

- **Around midnight**
 - First run staff arrive
- **Early AM hours**
 - Elute generators, prepare kits
 - Several dispensing and distribution runs
- **~7-8AM**
 - Typical time for first patient diagnostic scans
- **Late AM / early PM**
 - Stat doses; add-on doses
- **Afternoon**
 - Order receipt, set-up for next day
Current US Mo-99 Supply Chain

1. Enrichment Facility
 - U-235 Targets

2. Reactor
 - Irradiated targets
 - U-235 targets irradiated

3. Processor
 - Chemically separate Mo-99

4. Generator Manufacturer
 - Bulk Mo-99
 - Place Mo-99 in Tc-99m generator

5. Nuclear Pharmacy
 - Mo-99/Tc-99m Generators
 - Elute Tc-99m to prepare doses

6. Medical Facility
 - Tc-99m Doses
Current US Mo-99 Supply Chain

Mo-99 -- 66h half life
12h delay = 12% product lost
24h delay = 22% product lost

Tc-99m -- 6h half life
12h delay = !

Enrichment Facility → Reactor → Processor → Generator Manufacturer → Nuclear Pharmacy → Medical Facility

U-235 Targets → Irradiated targets → Chemically separate Mo-99 → Bulk Mo-99 → Mo-99/Tc-99m Generators → Tc-99m Doses

Place Mo-99 in Tc-99m generator → Elute Tc-99m to prepare doses
Impact of Mo-99 Supply Chain Problems

- It is estimated there are about 18 million nuclear medicine procedures per year in the US, 80% of which use Tc-99m (SNMMI Sep 2015)
 - $18\,\text{million per year} \times 0.8 / 365 \, \text{d/y} \approx 40,000 \, \text{per day}$

- For every day without Mo-99, approximately 40,000 patients in the US would not receive their prescribed diagnostic imaging procedure
Perspectives
Perspectives

• Supply chain stability is critical to patient care
• Disruptions to the Mo-99 supply chain…
 …directly impact patient care
 …directly impact the modality

• Radiopharmaceutical dispensing is the opposite of durable good distribution

• Nuclear pharmacies attempt to mitigate impacts of supply chain disruptions, but cannot completely overcome an interruption in supply of Mo-99
 – In the (very) short run you can increase materials efficiencies.
 – But then you run out of runway.
 – Triage.
Perspectives

• Global coordination and awareness by AIPES and OECD can help mitigate disruptions

• Based on AIPES and OECD projections, there are still tight weeks, even with all of the reactor and processor coordination
 – Annual view is “ok,” but with some vulnerability; things look a little different at the week-to-week view.
 – What happens when things are tight and something unexpected occurs? This is where having the 35% reserve capacity mentioned by OECD would help.
 – Communication of possible problems ahead of time is extremely helpful.

• NRU contingency
Perspectives

• AMIPA (2012) directed the DOE “to evaluate and support projects for the production in the United States, without the use of highly enriched uranium, of significant quantities of molybdenum-99 for medical uses.”

• The transition from HEU to LEU sources of Mo-99 is in support of non-proliferation initiatives, which we all support.

This transition needs to be very carefully managed to reduce the likelihood of a supply interruption or shortage.
Perspectives

- Customers are eligible for a $10 reimbursement for use of LEU Tc-99m

- Consideration should be given to increasing the amount based on inflation and other factors
Perspectives

• In addition to non-HEU sources, AMIPA (2012) also directed the DOE “to evaluate and support projects for the production in the United States…”

• US production offers
 – Increased efficiency due to improved logistics
 – Reduced risk due to shorter logistics
 – Reduced risk due to international factors

• Continued US government support for domestic Mo-99 sources
Perspectives

• AMIPA addresses Mo-99 production

• In nuclear medicine, there are other reactor-produced radioisotopes, such as I-131 and Xe-133, in use. For example:
 – I-131 has both therapeutic and diagnostic indications
 – Xe-133 is a diagnostic imaging agent

• Supply chain instability can impact these products as well
Thank you.