A Risk Analysis of the Molybdenum-99 Supply Chain Using Bayesian Networks

J.R. Liang
The George Washington University
2121 I St NW, Washington, DC, USA 20052

ABSTRACT

The cessation of routine Molybdenum-99 (99Mo) production at the National Research Universal (NRU) reactor in Canada, which historically had the highest 99Mo production capability worldwide, has led to widespread concern over the ability of the 99Mo supply chain to meet demand. There is significant disagreement among analyses from trade groups, governments, and other researchers, predicting everything from no significant impact to major worldwide shortages. Using Bayesian networks, this research focused on modeling the 99Mo supply chain to quantify how a disrupting event, such as the unscheduled downtime of a reactor, will impact the global supply. This not only includes quantifying the probability of a shortage occurring, but also identifying which nodes in the supply chain introduce the most risk to better inform decision makers on where future facilities or other risk mitigation techniques should be applied.