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LEU URANYL SULFATE SOLUTION FOR MO-99 
PRODUCTION

 Radiolysis of water produces hydrogen and 
hydrogen peroxide. 
 No large pH changes expected during 

irradiation in sulfate media
 Hydrogen peroxide is an important radiolysis 

product. Buildup of peroxide can lead to 
precipitation of uranyl peroxide
 Products of nitrate radiolysis do lead to 

peroxide destruction
 Products of sulfate radiolysis do NOT affect 

peroxide destruction
 Precipitation of uranyl peroxide occurred during 

irradiation of LEU uranyl sulfate solutions at our 
3 MeV Van de Graaff accelerator 
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VAN DE GRAAFF EXPERIMENTS

 0.5 and 2.0 mL uranyl sulfate (DU, NU, and LEU) samples irradiated
 Gases measured in sweep gas via RGA
 Samples temperature controlled
 Various dose rates applied to samples
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PRODUCTION AND DECOMPOSITION OF                     
URANYL PEROXIDE
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UO2O2·2H2O(s) + 2 H+ → UO2
2+ + H2O2                       Equation 2 

H2O2 → H2O + ½ O2                          Equation 3 

UO2O2 →UO3 + ½ O2                          Equation 4 

UO3 + 2 H+ → UO2
2+ + H2O                         Equation 5 

UO2
2+ + H2O2 + n H2O ↔ ↓UO2O2·nH2O(s) + 2 H+                       Equation 1 

 Radiolyis of water generates hydrogen peroxide and can react with uranyl ion to 
form uranyl peroxide
 Two forms of uranyl peroxide can form studtite (n=4) and meta-studtite (n=2)
 Two different mechanisms proposed by Silverman et. al. for uranyl peroxide 

decomposition (equation 2&3 and equation 4&5)
 Temperature and addition of a catalyst play a role as well
Silverman, M.D., Watson, G.M., and McDuffie, H.F. “Peroxide Decomposition in Aqueous Homogeneous Reactor Fuels.” Industrial 
and Engineering Chemistry, 8, 1238-1241 (1956). 



DIFFERENT SOURCES OF URANIUM

 VDG experiments used different sources of uranium 
 Various metal ions were present in solution
 LEU used at VDG because it will be used for experiments at linac
 Nitrate radiolysis products lead to destruction of hydrogen peroxide
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Solution Cr 
(ppm)

Fe 
(ppm)

Ni 
(ppm)

Cu 
(ppm)

Pt 
(ppm)

NO3
-

(mM)
NU - 140 g-U/L <0.25 <0.1 <0.05 0.41 0.54 0
DU - 185 g-U/L 9.6 81 6.3 4.2 0.02 500

LEU - 148 g-U/L 1.1 18 2.7 1.3 <0.01 0

Bhattacharyya P.K., Saini R.D. Radiolytic yields G(HNO2) and G(H2O2) in the aqueous nitric acid system. – Int. J. Radiat. Phys. Chem. 
– 1973. – V. 5. – P. 91-99. 



NU AND DU VDG RESULTS

 Hydrogen peroxide added prior to irradiation because precipitation did not occur in 2014-
2015
 Delayed onset of precipitation where it occurred 8-21 days after irradiation
 Apparent steady state (gas generation rates stabilize) and overall H2:O2 ratios shown 
 DU solutions – lower gas production and no precipitation
 Solubility limit of hydrogen peroxide is ~ 1 mM
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1Sample was cloudy on 12/07/16, and precipitate was observed on 12/22/16. 2Precipitate was observed on 12/06/16. 

Sample Type Sample 
Temp (°C)

Average 
Current 

(μA)

Estimated 
Total Dose 

(Mrad)

Dose Rate 
(Mrad/min)

Measured 
H2O2 (µM) Precipitation Gas Generation H2 

(μmoles/Mrad)
Gas Generation O2 

(μmoles/Mrad)
Overall H 
to O Ratio

Apparent 
Steady 

State Time  
( min)

Measured 
H:O Ratio @ 
Steady State

NU 62 19 13,600 44 130 NO 0.045 0.019 2.4 60 2.0

NU - 30μM/L H2O2 added 64 20 15,800 47 390 Delayed1 0.079 0.036 2.2 45 2.2

NU - 17μM/L H2O2 added 80 20 16,000 48 60 NO 0.089 0.043 2.1 60 2.0

NU - 170μM/L H2O2 added 60 18 17,300 42 610 NO 0.065 0.031 2.1 83 2.1

NU - 4300μM/L H2O2 added 60 18 10,300 41 540 YES 0.075 0.049 1.5 140 2.1

NU - 2300μM/L H2O2 added 60 17 13,300 41 60 YES 0.122 0.087 1.4 140 2.0

NU - 50μM/L H2O2 added 63 20 15,800 46 800 Delayed2 0.101 0.046 2.2 42 2.1

NU - 240μM/L H2O2 added 63 20 15,000 47 840 NO 0.104 0.047 2.2 50 2.1

NU - 130μM/L H2O2 added 60 18 15,000 41 880 NO 0.100 0.043 2.4 130 2.2

DU - 50μM/L H2O2 added 63 19 12,200 48 100 NO 0.011 0.005 2.2 25 2.2

DU - 55μM/L H2O2 added 63 20 14,900 46 6 NO 0.011 0.005 2.5 30 2.5



GAS ANALYSIS RESULTS FOR NU SAMPLES
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 No precipitation

 Delayed precipitation



DU RESULTS COMPARED TO NU RESULTS
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 DU sample

 NU sample



LEU VDG RESULTS

 Precipitation occurred in LEU solutions without additional catalysts added
 200 ppm Fe2+,250 ppm Fe3+, and 100 ppm Fe2+ with 100 ppm Cu2+ prevented 

precipitation
 Total dose and dose rates applied to samples were varied 
 Temperatures were also varied
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*NaF was added as a complexant

Sample Type Sample 
Temp (°C)

Average 
Current 

(μA)

Estimated 
Total Dose 

(Mrad)

Dose Rate 
(Mrad/min)

Measured 
H2O2 (µM) Precipitation

H2

(μmoles/Mrad)
O2

(μmoles/Mrad)
Overall H to O 

Ratio

Apparent 
Steady State 
Time  (min)

Measured 
H:O Ratio @ 
Steady State

LEU 64 20 16,728 46 100 YES 0.135 0.054 2.5 60 2.3

LEU 62 19 13,990 43 17 YES 0.146 0.060 2.4 60 2.3

LEU - Fe+2 @1000ppm 66 21 17,994 50 1300* NO 0.025 0.010 2.4 55 2.4

LEU - Fe+2 @1000ppm 32 5 4,150 12 2100* NO 0.011 0.002 5.4 252 3.1

LEU - Fe+2 @500ppm 66 22 18,519 51 16* NO 0.039 0.017 2.3 50 2.3

LEU - Fe+2 @500ppm 29 4 3,295 9 440* NO 0.057 0.023 2.5 107 2.3

LEU - Fe+2 @200ppm 30 4 3,575 10 2600* NO 0.048 0.019 2.5 173 2.4

LEU - Cu+2 @500ppm 34 5 4,541 12 1600* YES 0.066 0.027 2.5 N/A N/A

LEU - Fe+2 & Cu+2 @100ppm 28 4 1,112 9 860* NO 0.032 0.011 2.7 N/A N/A

LEU - Fe+3 @250ppm 30 4 1,336 11 1600* NO 0.030 0.009 3.2 N/A N/A



PEROXIDE DESTRUCTION BY FE2+
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Fe2+ + H2O2 → Fe3+ + OH− + OH•        Equation (7)   

OH• + H2O2 → HO2• +H2O         Equation (8)   

Fe3+ + • 2HO → Fe2+ + H+ + O2        Equation (9)   

Fe2+ + • 2HO → Fe3+ + HO2
−         Equation (10)   

Fe2+ + OH• → Fe3+ + OH−          Equation (11) 

 Total gas production decreases significantly when Fe2+ is present

 A possible explanation may be that Fe3+ is acting as an electron scavenger (Fenton reaction, Fe2+ is
oxidized to Fe3+ by peroxide to form the OH radical (equation 7))

 The radical goes on the decompose hydrogen peroxide. It also become the chain breaker by
oxidizing Fe2+ to Fe3+

 Fe3+ can interact with solvated electron to form Fe2+, which is why Fe2+ and Fe3+ were both effective
at catalyzing peroxide destruction

De Laat, J. and Gallard, H. “Catalytic Decomposition of Hydrogen Peroxide by Fe(III) in Homogeneous Aqueous Solution: Mechanism 
and Kinetic Modeling,” Environ. Sci. Technol. 33, 2726-2732 (1999). 



GAS ANALYSIS RESULTS FOR LEU SAMPLES
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 No catalyst – precipitation occurred

 500 ppm Fe2+ - precipitation did not occur



CONCLUSIONS FROM VDG PEROXIDE 
EXPERIMENTS

Precipitation of uranyl peroxide occurred in LEU samples 
without additional catalysts
Temperature and catalyst concentration play an important role in 

preventing uranyl peroxide precipitation
200 ppm Fe2+, 250 ppm Fe3+, and 100 ppm Fe2+ with 100 ppm 

Cu2+ all were successful at preventing precipitation
Delayed onset of uranyl-peroxide precipitation is concerning
Mini-AMORE experiments will follow 

– Fissioning and higher power densities in mini-AMORE
LEU samples will be irradiated with and without catalysts to look 

for uranyl peroxide precipitation
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LEU URANYL SULFATE SOLUTION FOR MO-99 
PRODUCTION

 ~30 times more Pu-239 from LEU compared to HEU
 Avoid generation of GTCC waste - >1 nCi/g Pu-239
 Set of tracer experiments to investigate Pu behavior on titania in a sulfate 

media
 Examined ways to control Pu behavior
 Collected batch data
 Tested batch data results in small-scale column setting

Youker, A.J., Brown, M.A., Heltemes, T.A., and Vandegrift, G.F. Controlling Pu behavior on Titania:

Implications for LEU Fission-Based Mo-99 Production. Ind. Eng. Chem. Research., 

reviewer comments were addressed. 13



PU ADSORPTION ON TITANIA

 Batch study results suggest better adsorption at higher temperature and lower 
acid concentration
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Youker, A.J., Brown, M.A., Heltemes, T.A., and Vandegrift, G.F. Controlling Pu behavior on 
Titania: Implications for LEU Fission-Based Mo-99 Production. Ind. Eng. Chem. Research., 
reviewer comments were addressed.



COLUMN STUDY: TEMPERATURE EFFECTS

 0.66 cm X 1 cm L titania column
 Direct down-scale column for plant-scale design
 13.3 cm/min loading velocity and 6.7 cm/min stripping velocity
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Youker, A.J., Brown, M.A., Heltemes, T.A., and Vandegrift, G.F. Controlling Pu behavior on 
Titania: Implications for LEU Fission-Based Mo-99 Production. Ind. Eng. Chem. Research., 
reviewer comments were addressed.

Sample %Pu-239 80°C %Pu-239 25°C
Column Effluent #1 8.7 20.4
Column Effluent  #2 7.7 33.3

pH 1 H2SO4 Wash 0.7 6.4
H2O Wash #1 0.1 0.4

1 M NaOH Strip 0.03 0.04
H2O Wash #2 0.0008 0.002

1 M H2SO4 Wash 62.8 37.8
Sorbent contact with 1 

M H2SO4
4.5 2.6

Remaining Activity 15.2 0



COLUMN STUDY: EFFECT OF H+

 Less than 1% Pu-239 when first acid wash is pH 1 H2SO4

 >35% Pu-239 when first acid wash is 0.5 M H2SO4

 Final acid wash can be used to remove additional Pu-239
 0.66 cm X 1 cm L titania column
 Direct down-scale column for plant-scale design
 13.3 cm/min loading velocity and 6.7 cm/min stripping velocity
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Youker, A.J., Brown, M.A., Heltemes, T.A., and Vandegrift, G.F. Controlling Pu behavior on 
Titania: Implications for LEU Fission-Based Mo-99 Production. Ind. Eng. Chem. Research., 
reviewer comments were addressed.



HOW TO CONTROL PU BEHAVIOR ON TITANIA
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Youker, A.J., Brown, M.A., Heltemes, T.A., and Vandegrift, G.F. Controlling Pu behavior on 
Titania: Implications for LEU Fission-Based Mo-99 Production. Ind. Eng. Chem. Research., 
reviewer comments were addressed.

 Temperature and acid wash concentration
 Decreasing temperature below 80°C affects Mo adsorption on titania –

not recommended
 Increasing the acid wash concentration to 0.5 or 1 M H2SO4-

recommended because results have shown no Mo losses
 Results given below for Mo-99 down-scale column run with Pu-239

Sample %Mo-99 Sample %Mo-99 

Column Effluent #1 0.009 Column Effluent #1 0.03

Column Effluent  #2 0.016 Column Effluent  #2 0

0.5 M H2SO4 Wash #1 0.007 1 M H2SO4 Wash #1 0.014

H2O Wash #1 0.004 H2O Wash #1 0

1 M NaOH Strip 100 1 M NaOH Strip 100

H2O Wash #2 0.1 H2O Wash #2 0.1



FUTURE WORK WITH AMORE AND MINI-AMORE
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 AMORE – 20 L LEU UO2SO4
solution for production of up to     
20 Ci Mo-99 EOB – DU target –
electron linac
Mini-AMORE – dry-well in target 

solution vessel where small 
volumes of uranyl sulfate solution 
will be irradiated
 Various catalysts will be tested to 

combat uranyl peroxide 
precipitation as part of mini-
AMORE
 Pu-239 behavior will be followed in 

more representative conditions for 
Mo-99 production as part of 
AMORE
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