PROGRESS TOWARD MITIGATING URANYL PEROXIDE PRECIPITATION AND CONTROLLING PU BEHAVIOR ON TITANIA

AMANDA YOUKER
Chemist

Sergey Chemerisov, Michael Kalensky, Alex Brown, Kevin Quigley, Tom Brossard, James Byrnes, and George F. Vandegrift
LEU URANYL SULFATE SOLUTION FOR MO-99 PRODUCTION

- Radiolysis of water produces hydrogen and hydrogen peroxide.
- No large pH changes expected during irradiation in sulfate media.
- Hydrogen peroxide is an important radiolysis product. Buildup of peroxide can lead to precipitation of uranyl peroxide.
- Products of nitrate radiolysis do lead to peroxide destruction.
- Products of sulfate radiolysis do NOT affect peroxide destruction.
- Precipitation of uranyl peroxide occurred during irradiation of LEU uranyl sulfate solutions at our 3 MeV Van de Graaff accelerator.
VAN DE GRAAFF EXPERIMENTS

- 0.5 and 2.0 mL uranyl sulfate (DU, NU, and LEU) samples irradiated
- Gases measured in sweep gas via RGA
- Samples temperature controlled
- Various dose rates applied to samples
PRODUCTION AND DECOMPOSITION OF URANYL PEROXIDE

\[\text{UO}_2^{2+} + \text{H}_2\text{O}_2 + n \text{H}_2\text{O} \leftrightarrow \downarrow \text{UO}_2\text{O}_2\cdot n\text{H}_2\text{O}(s) + 2 \text{H}^+ \]
Equation 1

\[\text{UO}_2\text{O}_2\cdot 2\text{H}_2\text{O}(s) + 2 \text{H}^+ \rightarrow \text{UO}_2^{2+} + \text{H}_2\text{O}_2 \]
Equation 2

\[\text{H}_2\text{O}_2 \rightarrow \text{H}_2\text{O} + \frac{1}{2} \text{O}_2 \]
Equation 3

\[\text{UO}_2\text{O}_2 \rightarrow \text{UO}_3 + \frac{1}{2} \text{O}_2 \]
Equation 4

\[\text{UO}_3 + 2 \text{H}^+ \rightarrow \text{UO}_2^{2+} + \text{H}_2\text{O} \]
Equation 5

- Radiolysis of water generates hydrogen peroxide and can react with uranyl ion to form uranyl peroxide
- Two forms of uranyl peroxide can form studtite (n=4) and meta-studtite (n=2)
- Two different mechanisms proposed by Silverman et. al. for uranyl peroxide decomposition (equation 2&3 and equation 4&5)
- Temperature and addition of a catalyst play a role as well

DIFFERENT SOURCES OF URANIUM

- VDG experiments used different sources of uranium
- Various metal ions were present in solution
- LEU used at VDG because it will be used for experiments at linac
- Nitrate radiolysis products lead to destruction of hydrogen peroxide

<table>
<thead>
<tr>
<th>Solution</th>
<th>Cr (ppm)</th>
<th>Fe (ppm)</th>
<th>Ni (ppm)</th>
<th>Cu (ppm)</th>
<th>Pt (ppm)</th>
<th>NO$_3^-$ (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NU - 140 g-U/L</td>
<td><0.25</td>
<td><0.1</td>
<td><0.05</td>
<td>0.41</td>
<td>0.54</td>
<td>0</td>
</tr>
<tr>
<td>DU - 185 g-U/L</td>
<td>9.6</td>
<td>81</td>
<td>6.3</td>
<td>4.2</td>
<td>0.02</td>
<td>500</td>
</tr>
<tr>
<td>LEU - 148 g-U/L</td>
<td>1.1</td>
<td>18</td>
<td>2.7</td>
<td>1.3</td>
<td><0.01</td>
<td>0</td>
</tr>
</tbody>
</table>

NU AND DU VDG RESULTS

- Hydrogen peroxide added prior to irradiation because precipitation did not occur in 2014-2015
- Delayed onset of precipitation where it occurred 8-21 days after irradiation
- Apparent steady state (gas generation rates stabilize) and overall H₂:O₂ ratios shown
- DU solutions – lower gas production and no precipitation
- Solubility limit of hydrogen peroxide is ~ 1 mM

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Sample Temp (°C)</th>
<th>Average Current (µA)</th>
<th>Estimated Total Dose (Mrad)</th>
<th>Dose Rate (Mrad/min)</th>
<th>Measured H₂O₂ (µM)</th>
<th>Precipitation</th>
<th>Gas Generation H₂ (µmoles/Mrad)</th>
<th>Gas Generation O₂ (µmoles/Mrad)</th>
<th>Overall H₂ to O Ratio</th>
<th>Apparent Steady State Time (min)</th>
<th>Measured H₂O Ratio @ Steady State</th>
</tr>
</thead>
<tbody>
<tr>
<td>NU</td>
<td>62</td>
<td>19</td>
<td>13,600</td>
<td>44</td>
<td>130</td>
<td>NO</td>
<td>0.045</td>
<td>0.019</td>
<td>2.4</td>
<td>60</td>
<td>2.0</td>
</tr>
<tr>
<td>NU - 30µM/L H₂O₂ added</td>
<td>64</td>
<td>20</td>
<td>15,800</td>
<td>47</td>
<td>390</td>
<td>Delayed¹</td>
<td>0.079</td>
<td>0.036</td>
<td>2.2</td>
<td>45</td>
<td>2.2</td>
</tr>
<tr>
<td>NU - 17µM/L H₂O₂ added</td>
<td>80</td>
<td>20</td>
<td>16,000</td>
<td>48</td>
<td>60</td>
<td>NO</td>
<td>0.089</td>
<td>0.043</td>
<td>2.1</td>
<td>60</td>
<td>2.0</td>
</tr>
<tr>
<td>NU - 170µM/L H₂O₂ added</td>
<td>60</td>
<td>18</td>
<td>17,300</td>
<td>42</td>
<td>610</td>
<td>NO</td>
<td>0.065</td>
<td>0.031</td>
<td>2.1</td>
<td>83</td>
<td>2.1</td>
</tr>
<tr>
<td>NU - 4300µM/L H₂O₂ added</td>
<td>60</td>
<td>18</td>
<td>10,300</td>
<td>41</td>
<td>540</td>
<td>YES</td>
<td>0.075</td>
<td>0.049</td>
<td>1.5</td>
<td>140</td>
<td>2.1</td>
</tr>
<tr>
<td>NU - 2300µM/L H₂O₂ added</td>
<td>60</td>
<td>17</td>
<td>13,300</td>
<td>41</td>
<td>60</td>
<td>YES</td>
<td>0.122</td>
<td>0.087</td>
<td>1.4</td>
<td>140</td>
<td>2.0</td>
</tr>
<tr>
<td>NU - 50µM/L H₂O₂ added</td>
<td>63</td>
<td>20</td>
<td>15,800</td>
<td>46</td>
<td>800</td>
<td>Delayed²</td>
<td>0.101</td>
<td>0.046</td>
<td>2.2</td>
<td>42</td>
<td>2.1</td>
</tr>
<tr>
<td>NU - 240µM/L H₂O₂ added</td>
<td>63</td>
<td>20</td>
<td>15,000</td>
<td>47</td>
<td>840</td>
<td>NO</td>
<td>0.104</td>
<td>0.047</td>
<td>2.2</td>
<td>50</td>
<td>2.1</td>
</tr>
<tr>
<td>NU - 130µM/L H₂O₂ added</td>
<td>60</td>
<td>18</td>
<td>15,000</td>
<td>41</td>
<td>880</td>
<td>NO</td>
<td>0.100</td>
<td>0.043</td>
<td>2.4</td>
<td>130</td>
<td>2.2</td>
</tr>
<tr>
<td>DU - 50µM/L H₂O₂ added</td>
<td>63</td>
<td>19</td>
<td>12,200</td>
<td>48</td>
<td>100</td>
<td>NO</td>
<td>0.011</td>
<td>0.005</td>
<td>2.2</td>
<td>25</td>
<td>2.2</td>
</tr>
<tr>
<td>DU - 55µM/L H₂O₂ added</td>
<td>63</td>
<td>20</td>
<td>14,900</td>
<td>46</td>
<td>6</td>
<td>NO</td>
<td>0.011</td>
<td>0.005</td>
<td>2.5</td>
<td>30</td>
<td>2.5</td>
</tr>
</tbody>
</table>

¹Sample was cloudy on 12/07/16, and precipitate was observed on 12/22/16. ²Precipitate was observed on 12/06/16.
GAS ANALYSIS RESULTS FOR NU SAMPLES

- No precipitation

- Delayed precipitation
DU RESULTS COMPARED TO NU RESULTS

- DU sample

- NU sample
LEU VDG RESULTS

- Precipitation occurred in LEU solutions without additional catalysts added
- 200 ppm Fe$^{2+}$, 250 ppm Fe$^{3+}$, and 100 ppm Fe$^{2+}$ with 100 ppm Cu$^{2+}$ prevented precipitation
- Total dose and dose rates applied to samples were varied
- Temperatures were also varied

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Sample Temp (°C)</th>
<th>Average Current (µA)</th>
<th>Estimated Total Dose (Mrad)</th>
<th>Dose Rate (Mrad/min)</th>
<th>Measured H$_2$O$_2$ (µM)</th>
<th>Precipitation</th>
<th>H$_2$ (µmoles/Mrad)</th>
<th>O$_2$ (µmoles/Mrad)</th>
<th>Overall H to O Ratio</th>
<th>Apparent Steady State Time (min)</th>
<th>Measured H:O Ratio @ Steady State</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEU</td>
<td>64</td>
<td>20</td>
<td>16,728</td>
<td>46</td>
<td>100</td>
<td>YES</td>
<td>0.135</td>
<td>0.054</td>
<td>2.5</td>
<td>60</td>
<td>2.3</td>
</tr>
<tr>
<td>LEU</td>
<td>62</td>
<td>19</td>
<td>13,990</td>
<td>43</td>
<td>17</td>
<td>YES</td>
<td>0.146</td>
<td>0.060</td>
<td>2.4</td>
<td>60</td>
<td>2.3</td>
</tr>
<tr>
<td>LEU - Fe$^{2+}$ @1000 ppm</td>
<td>66</td>
<td>21</td>
<td>17,994</td>
<td>50</td>
<td>1300*</td>
<td>NO</td>
<td>0.025</td>
<td>0.010</td>
<td>2.4</td>
<td>55</td>
<td>2.4</td>
</tr>
<tr>
<td>LEU - Fe$^{3+}$ @1000 ppm</td>
<td>32</td>
<td>5</td>
<td>4,150</td>
<td>12</td>
<td>2100*</td>
<td>NO</td>
<td>0.011</td>
<td>0.002</td>
<td>5.4</td>
<td>252</td>
<td>3.1</td>
</tr>
<tr>
<td>LEU - Fe$^{2+}$ @500 ppm</td>
<td>66</td>
<td>22</td>
<td>18,519</td>
<td>51</td>
<td>16*</td>
<td>NO</td>
<td>0.039</td>
<td>0.017</td>
<td>2.3</td>
<td>50</td>
<td>2.3</td>
</tr>
<tr>
<td>LEU - Fe$^{2+}$ @500 ppm</td>
<td>29</td>
<td>4</td>
<td>3,295</td>
<td>9</td>
<td>440*</td>
<td>NO</td>
<td>0.057</td>
<td>0.023</td>
<td>2.5</td>
<td>107</td>
<td>2.3</td>
</tr>
<tr>
<td>LEU - Fe$^{2+}$ @200 ppm</td>
<td>30</td>
<td>4</td>
<td>3,575</td>
<td>10</td>
<td>2600*</td>
<td>NO</td>
<td>0.048</td>
<td>0.019</td>
<td>2.5</td>
<td>173</td>
<td>2.4</td>
</tr>
<tr>
<td>LEU - Cu$^{2+}$ @500 ppm</td>
<td>34</td>
<td>5</td>
<td>4,541</td>
<td>12</td>
<td>1600*</td>
<td>YES</td>
<td>0.066</td>
<td>0.027</td>
<td>2.5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>LEU - Fe$^{2+}$ & Cu$^{2+}$ @100 ppm</td>
<td>28</td>
<td>4</td>
<td>1,112</td>
<td>9</td>
<td>860*</td>
<td>NO</td>
<td>0.032</td>
<td>0.011</td>
<td>2.7</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>LEU - Fe$^{3+}$ @250 ppm</td>
<td>30</td>
<td>4</td>
<td>1,336</td>
<td>11</td>
<td>1600*</td>
<td>NO</td>
<td>0.030</td>
<td>0.009</td>
<td>3.2</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*NaF was added as a complexant
PEROXIDE DESTRUCTION BY FE2+

\[
\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH}^- + \text{OH}\cdot \\
\text{OH}\cdot + \text{H}_2\text{O}_2 \rightarrow \text{HO}_2\cdot + \text{H}_2\text{O} \quad \text{Equation (7)}
\]

\[
\text{Fe}^{3+} + \cdot 2\text{HO} \rightarrow \text{Fe}^{2+} + \text{H}^+ + \text{O}_2 \\
\text{Fe}^{2+} + \cdot 2\text{HO} \rightarrow \text{Fe}^{3+} + \text{HO}_2^- \\
\text{Fe}^{2+} + \text{OH}\cdot \rightarrow \text{Fe}^{3+} + \text{OH}^- \quad \text{Equation (8)}
\]

- Total gas production decreases significantly when Fe2+ is present
- A possible explanation may be that Fe3+ is acting as an electron scavenger (Fenton reaction, Fe2+ is oxidized to Fe3+ by peroxide to form the OH radical (equation 7))
- The radical goes on the decompose hydrogen peroxide. It also become the chain breaker by oxidizing Fe2+ to Fe3+
- Fe3+ can interact with solvated electron to form Fe2+, which is why Fe2+ and Fe3+ were both effective at catalyzing peroxide destruction

GAS ANALYSIS RESULTS FOR LEU SAMPLES

- No catalyst – precipitation occurred

- 500 ppm Fe^{2+} - precipitation did not occur
CONCLUSIONS FROM VDG PEROXIDE EXPERIMENTS

- Precipitation of uranyl peroxide occurred in LEU samples without additional catalysts.
- Temperature and catalyst concentration play an important role in preventing uranyl peroxide precipitation.
- 200 ppm Fe$^{2+}$, 250 ppm Fe$^{3+}$, and 100 ppm Fe$^{2+}$ with 100 ppm Cu$^{2+}$ all were successful at preventing precipitation.
- Delayed onset of uranyl-peroxide precipitation is concerning.
- Mini-AMORE experiments will follow.
 - Fissioning and higher power densities in mini-AMORE.
- LEU samples will be irradiated with and without catalysts to look for uranyl peroxide precipitation.
LEU URANYL SULFATE SOLUTION FOR MO-99 PRODUCTION

- ~30 times more Pu-239 from LEU compared to HEU
- Avoid generation of GTCC waste - ≥1 nCi/g Pu-239
- Set of tracer experiments to investigate Pu behavior on titania in a sulfate media
- Examined ways to control Pu behavior
- Collected batch data
- Tested batch data results in small-scale column setting

Batch study results suggest better adsorption at higher temperature and lower acid concentration.
COLUMN STUDY: TEMPERATURE EFFECTS

<table>
<thead>
<tr>
<th>Sample</th>
<th>%Pu-239 80°C</th>
<th>%Pu-239 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Effluent #1</td>
<td>8.7</td>
<td>20.4</td>
</tr>
<tr>
<td>Column Effluent #2</td>
<td>7.7</td>
<td>33.3</td>
</tr>
<tr>
<td>pH 1 H₂SO₄ Wash</td>
<td>0.7</td>
<td>6.4</td>
</tr>
<tr>
<td>H₂O Wash #1</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>1 M NaOH Strip</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>H₂O Wash #2</td>
<td>0.0008</td>
<td>0.002</td>
</tr>
<tr>
<td>1 M H₂SO₄ Wash</td>
<td>62.8</td>
<td>37.8</td>
</tr>
<tr>
<td>Sorbent contact with 1 M H₂SO₄</td>
<td>4.5</td>
<td>2.6</td>
</tr>
<tr>
<td>Remaining Activity</td>
<td>15.2</td>
<td>0</td>
</tr>
</tbody>
</table>

- 0.66 cm X 1 cm L titania column
- Direct down-scale column for plant-scale design
- 13.3 cm/min loading velocity and 6.7 cm/min stripping velocity
COLUMNS STUDY: EFFECT OF H⁺

- Less than 1% Pu-239 when first acid wash is pH 1 H₂SO₄
- >35% Pu-239 when first acid wash is 0.5 M H₂SO₄
- Final acid wash can be used to remove additional Pu-239
- 0.66 cm X 1 cm L titania column
- Direct down-scale column for plant-scale design
- 13.3 cm/min loading velocity and 6.7 cm/min stripping velocity
HOW TO CONTROL PU BEHAVIOR ON TITANIA

- Temperature and acid wash concentration
- Decreasing temperature below 80°C affects Mo adsorption on titania – not recommended
- Increasing the acid wash concentration to 0.5 or 1 M H$_2$SO$_4$- recommended because results have shown no Mo losses
- Results given below for Mo-99 down-scale column run with Pu-239

<table>
<thead>
<tr>
<th>Sample</th>
<th>%Mo-99</th>
<th>Sample</th>
<th>%Mo-99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Effluent #1</td>
<td>0.009</td>
<td>Column Effluent #1</td>
<td>0.03</td>
</tr>
<tr>
<td>Column Effluent #2</td>
<td>0.016</td>
<td>Column Effluent #2</td>
<td>0</td>
</tr>
<tr>
<td>0.5 M H$_2$SO$_4$ Wash #1</td>
<td>0.007</td>
<td>1 M H$_2$SO$_4$ Wash #1</td>
<td>0.014</td>
</tr>
<tr>
<td>H$_2$O Wash #1</td>
<td>0.004</td>
<td>H$_2$O Wash #1</td>
<td>0</td>
</tr>
<tr>
<td>1 M NaOH Strip</td>
<td>100</td>
<td>1 M NaOH Strip</td>
<td>100</td>
</tr>
<tr>
<td>H$_2$O Wash #2</td>
<td>0.1</td>
<td>H$_2$O Wash #2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

FUTURE WORK WITH AMORE AND MINI-AMORE

- **AMORE** – 20 L LEU UO_2SO_4 solution for production of up to 20 Ci Mo-99 EOB – DU target – electron linac

- **Mini-AMORE** – dry-well in target solution vessel where small volumes of uranyl sulfate solution will be irradiated

- Various catalysts will be tested to combat uranyl peroxide precipitation as part of mini-AMORE

- **Pu-239** behavior will be followed in more representative conditions for Mo-99 production as part of AMORE
ACKNOWLEDGEMENTS

- The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.