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The High Flux Isotope Reactor (HFIR)
• Pressurized (470 psi), flux-trap type, light water cooled and moderated

• HEU fuel (U3O8 dispersed in aluminum) with involute plate geometry

• Operates at a steady state 85 MW

• Experiments in flux trap or beryllium reflector

• 24 days/cycle, 6–7 cycles/year

Picture of targets in flux trap: https://www.comsol.com/blogs/converting-high-flux-isotope-reactor-leu-fuel/
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Flux Trap Experiments—Rabbits and Targets

• High fast flux: 1.1×1015 n/cm2/s

• High thermal flux: 2.1×1015 n/cm2/s

• Small diameter: Ø9.5–11.3 mm

• 12.6 dpa/CY (steel)

• ~150 available rabbit positions, none instrumented

• ~15 target positions, 2 instrumented

• Design temperature (60–1200°C)

• Cost: $30–$400K

Full 
length 
target Rabbits inside 

target rod holder

Up to 7 
rabbits 

per 
target

51 
cm

Picture of targets in flux trap: https://www.comsol.com/blogs/converting-
high-flux-isotope-reactor-leu-fuel/



44

Irradiation Design and Methodology
• Mechanical design (Creo)

– Detailed holders with cutouts for 
specimens and instrumentation

– Welded and hermetically sealed 
containment vehicles

• Neutronics analysis (MCNP + 
ORIGEN)

– Neutron/gamma heating rates
– Fuel burnup, displacement damage
– Neutron activation + decay heating

• Thermal analysis (ANSYS)
– Multi-body heat transfer
– Thermal/mechanical coupling
– Small gas gaps that open or close as a 

result of swelling, creep, thermal 
expansion, etc., used to control 
temperature
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Neutronics Estimate Heat Generation Rates

Fission neutrons

Fission photons

Fission product photons

n,γ reactions

β decay

Vanadium Graphite

Core fission neutrons 0.3 (1%) 3.3 (11%)

Core fission photons 22.5 (48%) 17.7 (59%)

Core fission product photons 11.8 (25%) 8.8 (30%)

Local β decay 12.1 (26%) —

Relative contributions to the total heat generation rate (W/g)

• Heat generation rates comprise more than just gamma heating

• The axial profile is strong but relatively independent of material (0–
45%)

• The radial profile in the flux trap is weaker but material dependent 
(~10–15%)

• The radial profile in the reflector can be large (possibly by orders of 
magnitude)

Visualization of nuclear heat generation mechanisms in a reactor
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• Extremely high power density in HFIR core
– High neutron and gamma heating rates: 30 W/g to >100 W/g in flux trap

– Large spatial gradients in temperature and dose without proper design

• Temperature controlled by varying fill gas conductivity and size of gas gaps
– Fill gas is usually He, Ne, Ar, or a mixture of these gases

– Gaps on the order of micrometer to millimeter

– Thermal/structural coupling to account for thermal expansion and/or swelling

Thermal Modeling

Internal heat 
generation

Thermal/structural 
contact

Convection
185°C 

gradient 
through 
75 µm 
He gap

1,000°C gradient 
through 255 µm 

neon gap 
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Experiment Assembly
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Materials Irradiations for SHINE Medical Technologies

• SHINE Medical Technologies is developing a accelerator-driven subcritical assembly for the 
domestic production of molybdenum-99 and other isotopes for medical diagnosis and treatments 

• The subcritical design has a number of materials challenges that are unique and require 
evaluation 

• To support this effort, study of Zircaloy-4 and hydrided Zircaloy-4 under different experimental 
conditions, including neutron irradiation at temperatures of 60°C  and 100°C, has been initiated
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Irradiation Plan 

Material Type
Design 

Temperature
Hydrogen 

Level

Desired 
Fluence 

(n/cm^2)
Irradiation Facility 

at HFIR
Irradiation 
Duration

Capsule Design 
Requirements

Zircaloy-4 Base 
Metal 60°C

• 0 ppm
• 250 ppm
• 500 ppm

1.00e20 HT-5 ~1.3 days
Perforated housing, in contact with 

reactor coolant (~53°C)
1.00e21 HT-5 ~13 days

Zircaloy-4 TIG 
Welded 100°C • 0 ppm

• 250 ppm
• 500 ppm

1.00e20 HT-5 ~1.3 days
Sealed capsule, filled with mixed gas 

1.00e21 HT-5 ~13 days
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100°C capsule design

60°C capsule design

Capsule Mechanical Design
Al6061 housing

Al6061 endcap

Al6061 endcap

Tensile specimens

Spacer

Al6061 
perforated 
housing

SiC springs
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Heat Generation Rate Calculations
• The MCNP code is used to provide a flux spectrum and to estimate the prompt fission and 

fission product decay portions of the total heat

• The SCALE code system is used to estimate the decay heat portion of the total heat 

• Nuclear heating in HFIR is dominated by photon absorption in most materials

– Heat generation due to photon absorption is dependent on the atomic number of the 
absorbing element and the magnitude and spectrum of the capture gammas released as 
a result of neutron absorption

• Peak heat generation rates of Zircaloy-4, SiC, and Al6061 are calculated for the hydraulic 
tube irradiation facility in the HFIR flux trap

• In the absence of very strong absorbers, the flux in 
the flux trap is generally flat and radially 
symmetric
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Thermal Analysis Results of 100°C Capsule

• 68% helium, 32% argon mixed gas
• ΔT across the gauge section is ~10°C
• Zircaloy-4 thermal conductivity 13.4W/mC
• Zircaloy-4 density 6550 kg/m3

Total heat flux
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Irradiation Design and Analysis for Coqui Pharmaceutical
• Neutronics calculations

– Scoping calculations to determine the proper enrichment

– Heat generation rates

– Fission gas inventory

– Burnup, decay heat

– Depletion

– Activity, isotopic composition of the target

– Specific activity

– Mo-99 yield

• Safety basis calculations
• Steady-state normal operation—at a full power of 87.6 MW
• Steady-state with flow blockage —at full power and 50% of the full flow
• Steady-state at 130% power (110.5 MW) and 100% flow
• Loss of offsite power (LOOP)
• Small break loss-of-coolant accident (SBLOCA)

• Preliminary design of the irradiation rig
• Flow calculation, determining orifice for a proper pressure 

drop
• Flow test
• Thermal and structural analysis
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Preliminary Design of the LVXF Irradiation Rig
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Preliminary Design of the LVXF Irradiation Rig



16

Miniature Target Test Capsule for Hydraulic tube Irradiations

Miniature fuel plate
• 1.14 mm thick
• 8.5 mm wide
• 55 mm long

Housing

Endcap
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Irradiations for BWXT • ~24 g moly disks
• ~1700 W total capsule heat load
• Max temp 1616°C under the Limiting Condition 

Scenario (LCS) at 130% power
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Questions?

Contact:
Nesrin O. Cetiner

cetinerno@ornl.gov
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HFIR Experiment Locations
16 positions ~34 positions
Neutron flux (n/cm2-sec) Neutron flux (n/cm2-sec)

7.5·1014 th 2.1·1015 th
5.0·1013 fast 1.1·1015 fast

D = 4.02 cm D = 1.27 cm
V = 710 cm3 V = 71 cm3

6 positions 8 positions
Neutron flux (n/cm2-sec) Neutron flux (n/cm2-sec)

4.3·1014 th 9.7·1014 th
1.3·1013 fast 5.3·1014 fast

D = 7.20 cm D = 4.60 cm
V = 2274 cm3 V = 929 cm3

NOTE: Facility diameters and volumes represent total available.  Actual specimen volumes
will be less.

RB* PositionLarge VXF

Target PositionSmall VXF
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