Progress Toward Eliminating Use of HEU in ⁹⁹Mo Production with a Multi-Physics Simulation

A solution vessel design optimization

S. Jun Kim, Cindy Buechler, Mario Naranjo, Blake Wilkerson

September 23-26, Mo-99 Topical meeting, Knoxville, TN

Accelerator driven fissile solution system for Mo99

Background:

Mo99 is a critical isotope in medical applications
Domestic Mo99 needs are demanding (No production in USA)

Innovations:

- LEU based Mo99 production (No proliferation risk)
- □ Accelerator driven neutron source (subcritical, easy to turn off)
- □ Self-regulating feature (Liquid fuel reactor concept)

Key Modeling Challenges:

- □ *Multi-physics coupled calculation for system evaluation*
- Bubbly flow modeling in TH code (i.e. Radiolytic gas)
- □ Fissile Solution height adjustment (temp, void)
- Non-uniform Fissile solution density

Applied simulation tools:

- Neutronic calculation : MCNP6.2
- Thermal Hydraulic calculation : Fluent 17.2
- Automated coupling calculation frame toolkit : Python
- □ All calculation is performed in LANL HPC

Neutronic Solver (MCNP calculation) → (Energy deposition calculation from heating tally

Fission induced power calculation

- MCNP6.2. with ENDF/B-VIII.0
- K-Code is performed to evaluate the sub-criticality of the system at the cold-start operating condition (Keff = 0.98)
- Reference solution for cold-start
 - Uranyl sulfate density : 1.85 kg/m3
 - Solution concentration : 140gU/L
 - Temperature : 20C
- Solution density is function of concentration & temp. (ANL)
- Fission and heating tally are used to evaluate the azimuthally averaged power profile within the fissile solution vessel.

Thermal Hydraulic Solver (Multiphase natural circulation) -> (Temperature and Void profile calculation)

Multiphase CFD specification

- Fluent17.2 used
- Eulerian based two fluid model approach
- Pseudo transient analysis for steady state calculation
- \blacktriangleright Hex dominant mesh with prism mesh at the wall (Y+<1)
- > URANS turbulence model (SST K- ω)
- Volumetric power (energy) and bubble generation (mass) profiles implemented via UDF script
- Convergence check on energy and mass balance
 - Energy in (MCNP) = Energy out (M-CFD)
 - Bubble generation = Bubble loss at degassing surface
- Convective heat transfer coefficients (HTCs) for outer side of cooling surfaces are evaluated based on empirical Gnielinski correlation.
- Multiphase closure model described in back-up slides

Multi-Physics modeling for fissile solution vessel

 \rightarrow (Power calculated by MCNP $\leftarrow \rightarrow$ thermal hydraulic calculated by M-CFD)

Thermal Hydraulic parameters calculated from M-CFD *Temp., Void distribution and bubble rising and liquid circulation pattern*

Two-phase fluid dynamic model developed to calculate steady state solution temperature and void profiles for an externally cooled solution vessel

- Solution Density with void profile $SD = \rho_{fuel} \times VF_{fuel} + \rho_{gas} \times VF_{gas}$
- Heat transfer by natural convection enhanced by bubble generation
- Non-Uniform volumetric heat and bubble generation profiles
- Temperature-dependent fuel and gas properties
- Results are used to improved HTC for system model (SimApp)

Input & output exchange for coupled calculations

-> Operational parameters (system power, solution temp. & density) are saturated

CASE-1 (SN=1.458e14s ⁻¹)	Run#1 (cold start)	Run#2	Run#3	Run#4	Run#5
MCNP Cold start condition (20C, 1185.4 kg/m3)	Input: 20C, 1185.4 kg/m3 Output: 6.37KW	Input: MCFD-run#1 Output: 2.61KW	Input: MCFD-run#2 Output: 3.27KW	Input: MCFD-run#3 Output: 3.01 KW	Input: MCFD-run#4 Output: 3.10 KW
MCFD Predicted normal operating condition (56.4C, 1142.6kg/m ³)	Input: MCNP-run#1 Output: 70.3C, 1128.6kg/m ³	Input: MCNP-run#2 Output: 53.7C, 1145.1kg/m ³	Input: MCNP-run#3 Output: 57.3C, 1141.8kg/m ³	Input: MCNP-run#4 Output: 55.9C, 1143.0kg/m ³	Input: MCNP-run#5 Output: 56.4C, 1142.6kg/m ³

What is the maximum achievable system power density?

Task #1 : Identify Maximum achievable power without boiling

Test matrix for Source Neutron case study

	Source Neutron	Predicted saturated power (initial \rightarrow saturated)
CASE1	1.458e14 [s ⁻¹]	6.37 → 3.10KW (0.25 kW/L)
CASE2	2.916e14 [s ⁻¹]	12.7 → 5.49KW (0.44 kW/L)
CASE3	5.832e14 [s ⁻¹]	25.5 → 9.41KW (0.75 kW/L)
CASE4	8.745e14 [s ⁻¹]	38.2 → 12.5KW (0.99 kW/L)

What is a favorable design for enhanced performance and safety? → Task #2 : Vessel configuration study for optimal design

A higher power with lower fuel temperature appears at a slender-shape vessel

What is the most practical coupling method?

Task #3 : Incremental coupling methodology development & demonstration

What is the most challenge in fissile solution TH modeling?

-> Million Dollar questions: 1)What is the adequate bubble (Radiolytic Gas) size?

2)Bubble induced turbulence mixing effect?

Supo Natural convective HTC calculation by Alex

Natural convective HTC estimation for SHINE

- Less than 1kW/L power density region, simulations over-predict the HTC value by a factor of 2~3
- High power density, simulations with different turbulence model provide a window of HTC
- Turbulence mixing and bubble size need to be further investigated for high fidelity calculation

Mid-year funding R&D activities

- 1. Nek5000 assessment for natural circulation simulation capability
- 2. Alternative generic fission solution design with e-beam induced photonuclear reaction
- 3. ARGUS paper review

Background: What is Nek5000?

*Nek5000 is a fast and scalable high-order CFD solver simulating unsteady incompressible flow and conjugate heat transfer [1]

- >Spectral element method (SEM) based open source code developed by ANL
- https://nek5000.mcs.anl.gov/
- > Selected as a high-resolution TH tool for advanced nuclear system modeling in NEAMS

<u>https://neams.inl.gov/SitePages/Home.aspx</u>

[1] NEK5000 user manual Version 17.0 Dec 17, 2017. ANL

Figure 2: SEM grid with data, solution, and geometry in terms of a 7th order polynomial

>Used in Exascale Computing Project (ECP) for Coupled Neutronic and CFD simulation regarding Small Modular Reactor design

https://www.exascaleproject.org/project/exasmr-coupled-monte-carlo-neutronics-and-fluid-flow-simulation-of-small-modular-reactors/

*Accomplishes spatial discretization using Gauss-Legendre quadrature.

> Elemental data is expanded in terms of Gauss-Lobatto-Legendre (GLL) points, whose weights are based on an $(N - 1)^{th}$ order Legendre polynomial.

*Decreases error exponentially by increasing polynomial order.

>Alternately, traditional FEM decreases error algebraically as the number of elements increases.

>A key characteristic of the spectral element method is this exponential convergence on the exact solution.

Test problem for Nek5000 assessment → initial assessment : Single phase Natural Circulation in a box

Conditions:

- ➤ Initial
 - $T_0 = 10 \,^{\circ}\text{C}$
- Boundary
 - No-slip Velocity at Walls
 - Heat Flux (q")
 - $q''_{x_{min}} = -1.0E5x + 1.8E4$
 - $q''_{x_{max}} = -1.0E5x$
 - Thermally Insulated elsewhere
- Boussinesq Approximation
 - $ffy = g\rho(1 \beta(T T_0))$
- ➢ Rayleigh number
 - $Ra = \frac{g\beta}{v\alpha}(T_s T_\infty)x^3 \sim 7.69 \times 10^7 \therefore turbulent$
- Prandtl number
 - $\Pr = \frac{c_p \mu}{k} = \frac{\nu}{\alpha} \sim 9.5$

*****Geometry:

- ≻Dimensions:
 - Height = Width = 0.18 m
 - Depth = 0.05 m

∻Mesh

- $> EN^3 = 38.72 \times 10^6 \text{ DOF}$
 - Spectral Elements = E = 38,720
 - 9^{th} order polynomial = N = 10

*Miscellaneous

- $\succ \Delta t = 0.02$
- ≻CFL = 2.0
- ≫3rd order Backward Difference Scheme

Preliminary result of Natural Circulation using Nek5000

- Temperature evolving behavior in a Natural circulation condition (This simulation is a DNS level calculation)
- Small size thermal eddy is captured using Nek5000

- Positive heat flux (left) and Negative heat flux(right) and no volumetric heat generation are applied for initial assessment in a rectangular box
- 3D transient natural convection with temperature contour

Segmented solution reactor mesh model (1/12th) with Nek5000

Accelerator based photonuclear (γ ,n) reaction for Mo99 production

Los Alamos National Laboratory

10/18/2018 | 17

Horizontal fissile solution design with e-beam accelerator → A generic system design for initial assessment

Initial specifications for a "generic" system design

Neutron source and Vessel configuration

- E-beam accelerator (40 MeV, 100kW)
- Horizontal accelerator orientation
- Natural U for photonuclear reaction (yellow)
- Uranyl nitrate/ Uranyl sulfate solution both tested (blue)
- Radiolytic gas stripping by inert gas (green)

Cooling configuration

- No cooling channel in the solution
- External cooling by forced convection

Note that further study is required to identify the optimal baseline system using MCNP and thermal hydraulic calculation

Side views of a proposed system

- Initial system design is based on a discussion with GMIS
- A kick-off meeting was held on Aug. 21

Preliminary results for initial system assessment → Various scenarios study with different solution conditions

Mo-99 activity calculation over 100 hrs. of irradiation with various solution conditions at accelerator specification 1

Fission rate calculation with MCNP6.2

Accelerator specification 1 (40Mev & 100kW)

	Uranyl type	U235%	UO2(NO3)2 Concentration	solution base	Sol. Den. [g/cc]	Keff	Mo99@100h	<u>rs</u>
Case1	UO2(NO3)2	Nat. Uranium	1.015mole/liter(400g/L)	H2O	1.31	0.1981	30	Curies
Case2	UO2(NO3)2	Nat. Uranium	1.015mole/liter(400g/L)	D2O	1.31	0.4163	85	Curies
Case3	UO2(NO3)2	Nat. Uranium	1.523mole/liter(600g/L)	H2O	1.47	0.2607	46	Curies
Case4	UO2(NO3)2	Nat. Uranium	2.03mole/liter(800g/L)	H2O	1.64	0.3217	60	Curies
Case5	UO2(NO3)2	3%_Enriched	2.03mole/liter(800g/L)	H2O	1.64	0.8591	724	Curies
Case6	UO2SO4	Nat. Uranium	0.58mole/liter(215g/L)	H2O	1.185	0.12	18	Curies

Test 1 : H₂O vs D₂O effect (Case 1&2)

- Heavy water scenario leads to high production due to low absorption X-section (better thermalizing)

- Heavy water produce Tritium gas which is not favorable for off-gas system design

Test 2 : UO₂(NO₃)₂ concentration effect (Case 1, 3, &4)

- Higher concentration produces linearly more Mo-99 activity

Test 3 : Enrichment effect (Case 4 & 5)

- 3% enriched solution make the solution system still subcritical ($K_{eff} = 0.85$)

Test 4 : Uranyl Nitrate vs Uranyl Sulfate effect (Case 1&6)

- Observed that no big difference in production at the similar concentration, but Nitrate has higher solubility limit

Accelerator specification 2 (35Mev & 10kW)

Case11	UO2(NO3)2	Nat. Uranium	1.015mole/liter(400g/L)	H2O	1.31	0.1981	3.4	Curies
Case12	UO2(NO3)2	Nat. Uranium	1.015mole/liter(400g/L)	D2O	1.31	0.4163	9.7	Curies
Case13	UO2(NO3)2	Nat. Uranium	1.523mole/liter(600g/L)	H2O	1.47	0.2607	5.2	Curies
Case14	UO2(NO3)2	Nat. Uranium	2.03mole/liter(800g/L)	H2O	1.64	0.3217	6.8	Curies
Case15	UO2(NO3)2	3%_Enriched	2.03mole/liter(800g/L)	H2O	1.64	0.8591	82.5	Curies
Case16	UO2SO4	Nat. Uranium	0.58mole/liter(215g/L)	H2O	1.185	0.12	2.1	Curies

<u>A Success path for Nuclear Technology development</u>

Thanks for your attention Q&A

S. Jun Kim (LANL)

Back-up slides...

Back-up slides...

Prediction of operational solution thermal hydraulics

(Solution temperature and solution density with void evaluation)

