Zircaloy-4 for Low-Temperature Use with Hydrogen and Neutron Exposure

Lauren Garrison
Chinthaka Silva

Mo-99 Topical Meeting 2018
ORNL supports SHINE with materials research for the target solution vessel and support pipes

Conditions of the Target Solution Vessel:
- Neutron irradiation
- Hydrogen exposure
- Water exposure
- Uranyl sulfate solution corrosion
- Temperature <100°C
- Low pressure

Initially, several materials were surveyed:
- Stainless steels
- Zr2.5Nb
- Zircaloy-4
Zircaloy-4 Investigation

- Zircaloy-4 has a long history in the nuclear industry, but typically is used as cladding, ~200-400°C

- Considerations for SHINE target solution vessel:
 - Neutron irradiation
 - <100 °C
 - Hydrogen, water, uranium solution
 - Welding

- Additional data is needed to confidently use this material for the unique application and to satisfy the NRC for licensing of the facility
Preparation of Material

Zircaloy-4 material

Machined bars for welding tests

C. M. Silva, C. D. Bryan. “Evaluation of Zircaloy-4 as the structural material for the Target Solution Vessel and support lines of SHINE — Sample preparation for the third-round neutron irradiation” FY17 Report. ORNL/TM-2017/482
Tungsten Inert Gas Welding

- Welding tests performed at Major Tool & Machine Inc.
- ORNL developed a weld quality analysis procedure
Post-weld heat treatment - Motivation

- **Base metal** total elongation is $\sim 22-29\%$

- **After TIG welding**, no post-weld heat treatment, total elongation is **similar to base metal for asymmetric samples** (one tab was in the weld and one tab reached the base metal)

- **After TIG welding**, no post-weld heat treatment, total elongation is $\sim 10-13\%$ for symmetric weld samples

C. M. Silva, C. D. Bryan. "Evaluation of Zircaloy-4 as the structural material for the Target Solution Vessel and support lines of SHINE — Sample preparation for the third-round neutron irradiation" FY17 Report. ORNL/TM-2017/482
Zircaloy-4 Phases

Alpha phase Zircaloy-4 (HCP)
Beta phase Zircaloy-4 (BCC)
Melted Zircaloy-4

Temperature (°C)

0 500 1000 1500 2000

https://www.atimetals.com/Products/Documents/datasheets/zirconium/alloy/Zr_nuke_waste_disposal_v1.pdf#search=zircaloy-4
Zircaloy-4 Phases

- How weld affects phases and properties
 - Ultimate tensile strength decreases
 - Yield strength increases
 - Total elongation decreases significantly

C.L. Whitmarsh, Review of Zircaloy-2 and Zircaloy-4 properties relevant to N.S. Savannah reactor design, Oak Ridge National Laboratory, ORNL-3281, (1962)
Zircaloy-4 Phases

- Annealing affects corrosion and mechanical properties

C.L. Whitmarsh, Review of Zircaloy-2 and Zircaloy-4 properties relevant to N.S. Savannah reactor design, Oak Ridge National Laboratory, ORNL-3281, (1962)

- Forms significant beta phase
- 20-80% increased corrosion in 350°C water or 750°C steam
- Tensile total elongation reduced
• Annealing affects corrosion and mechanical properties

Annealing below ~800°C
• Stays in alpha phase
• No change to corrosion rate
• Tensile properties can be improved

C.L. Whitmarsh, Review of Zircaloy-2 and Zircaloy-4 properties relevant to N.S. Savannah reactor design, Oak Ridge National Laboratory, ORNL-3281, (1962)
Heat treatment parameters for Zry-4, weld-6 samples. **Holding time 1h.**

<table>
<thead>
<tr>
<th>Sample</th>
<th>Target temperature (°C)</th>
<th>Ramping</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1</td>
<td>500</td>
<td>500 °C in 4.5 hours</td>
<td>Furnace cooling</td>
</tr>
<tr>
<td>6-2</td>
<td>600</td>
<td>600 °C in 5.0 hours</td>
<td>Furnace cooling</td>
</tr>
<tr>
<td>6-3</td>
<td>700</td>
<td>700 °C in 7.0 hours</td>
<td>Furnace cooling</td>
</tr>
<tr>
<td>6-4</td>
<td>750</td>
<td>750 °C in 7.0 hours</td>
<td>Furnace cooling</td>
</tr>
<tr>
<td>6-5</td>
<td>800</td>
<td>800 °C in 7.0 hours</td>
<td>Furnace cooling</td>
</tr>
</tbody>
</table>
Post Weld Heat Treatment

Heat treatment parameters for Zry-4, weld-6 samples. **Holding time 1h.**

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Cut location</th>
<th>PWHT temp. (°C)</th>
<th>Layer from surface</th>
<th>Ultimate tensile strength (MPa)</th>
<th>Yield stress (MPa)</th>
<th>Total elongation* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZFA01</td>
<td>SW</td>
<td>500</td>
<td>1</td>
<td>571</td>
<td>442</td>
<td>18.5</td>
</tr>
<tr>
<td>ZFA02</td>
<td>SW</td>
<td></td>
<td>2</td>
<td>583</td>
<td>468</td>
<td>19.4</td>
</tr>
<tr>
<td>ZFA03</td>
<td>SW</td>
<td></td>
<td>3</td>
<td>586</td>
<td>468</td>
<td>19.3</td>
</tr>
<tr>
<td>Average</td>
<td>SW</td>
<td></td>
<td></td>
<td>580</td>
<td>459</td>
<td>19</td>
</tr>
<tr>
<td>ZFB01</td>
<td>SW</td>
<td>600</td>
<td>1</td>
<td>601</td>
<td>488</td>
<td>17.2</td>
</tr>
<tr>
<td>ZFB02</td>
<td>SW</td>
<td></td>
<td>2</td>
<td>597</td>
<td>489</td>
<td>15.9</td>
</tr>
<tr>
<td>ZFB03</td>
<td>SW</td>
<td></td>
<td>3</td>
<td>586</td>
<td>476</td>
<td>15.6</td>
</tr>
<tr>
<td>Average</td>
<td>SW</td>
<td></td>
<td></td>
<td>595</td>
<td>484</td>
<td>16</td>
</tr>
<tr>
<td>ZFC01</td>
<td>SW</td>
<td>700</td>
<td>1</td>
<td>611</td>
<td>504</td>
<td>20.3</td>
</tr>
<tr>
<td>ZFC02</td>
<td>SW</td>
<td></td>
<td>2</td>
<td>599</td>
<td>489</td>
<td>17.1</td>
</tr>
<tr>
<td>ZFC03</td>
<td>SW</td>
<td></td>
<td>3</td>
<td>589</td>
<td>480</td>
<td>20.6</td>
</tr>
<tr>
<td>Average</td>
<td>SW</td>
<td></td>
<td></td>
<td>599</td>
<td>490</td>
<td>19</td>
</tr>
<tr>
<td>ZFD01</td>
<td>SW</td>
<td>750</td>
<td>1</td>
<td>568</td>
<td>477</td>
<td>17</td>
</tr>
<tr>
<td>ZFD02</td>
<td>SW</td>
<td></td>
<td>2</td>
<td>583</td>
<td>485</td>
<td>16.2</td>
</tr>
<tr>
<td>ZFD03</td>
<td>SW</td>
<td></td>
<td>3</td>
<td>583</td>
<td>481</td>
<td>20.9</td>
</tr>
<tr>
<td>Average</td>
<td>SW</td>
<td></td>
<td></td>
<td>578</td>
<td>481</td>
<td>18</td>
</tr>
<tr>
<td>ZFE01</td>
<td>SW</td>
<td>800</td>
<td>1</td>
<td>578</td>
<td>473</td>
<td>21.5</td>
</tr>
<tr>
<td>ZFE02</td>
<td>SW</td>
<td></td>
<td>2</td>
<td>592</td>
<td>482</td>
<td>20.9</td>
</tr>
<tr>
<td>ZFE03</td>
<td>SW</td>
<td></td>
<td>3</td>
<td>583</td>
<td>481</td>
<td>19.7</td>
</tr>
<tr>
<td>Average</td>
<td>SW</td>
<td></td>
<td></td>
<td>584</td>
<td>479</td>
<td>21</td>
</tr>
</tbody>
</table>

600°C slightly lower elongation

800°C slightly higher elongation

*TE values are overestimated here from raw data
Post Weld Heat Treatment

Heat treatment parameters for Zry-4, weld-7 samples. 800 °C, varied holding times.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Layer from surface</th>
<th>Ultimate tensile strength (MPa)</th>
<th>Yield stress (MPa)</th>
<th>Total elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZGA01, 800°C, 12h</td>
<td>1st of 4</td>
<td>588</td>
<td>487</td>
<td>18.1</td>
</tr>
<tr>
<td>ZGA02, 800°C, 12h</td>
<td>2nd of 4</td>
<td>582</td>
<td>489</td>
<td>16.6</td>
</tr>
<tr>
<td>ZGA03, 800°C, 12h</td>
<td>3rd of 4</td>
<td>584</td>
<td>476</td>
<td>17.2</td>
</tr>
<tr>
<td>ZGA04, 800°C, 12h</td>
<td>4th of 4</td>
<td>572</td>
<td>474</td>
<td>17.0</td>
</tr>
<tr>
<td>Avg.</td>
<td></td>
<td>582</td>
<td>482</td>
<td>17.2</td>
</tr>
<tr>
<td>ZGB01, 800°C, 24h</td>
<td>1st of 4</td>
<td>581</td>
<td>368</td>
<td>23.6</td>
</tr>
<tr>
<td>ZGB02, 800°C, 24h</td>
<td>2nd of 4</td>
<td>495</td>
<td>428</td>
<td>9.1</td>
</tr>
<tr>
<td>ZGB03, 800°C, 24h</td>
<td>3rd of 4</td>
<td>553</td>
<td>485</td>
<td>12.9</td>
</tr>
<tr>
<td>ZGB04, 800°C, 24h</td>
<td>4th of 4</td>
<td>466</td>
<td>425</td>
<td>8.7</td>
</tr>
<tr>
<td>Avg.</td>
<td></td>
<td>524</td>
<td>427</td>
<td>13.6</td>
</tr>
<tr>
<td>ZGC01, 800°C, 48h</td>
<td>1st of 4</td>
<td>351</td>
<td>346</td>
<td>17.8</td>
</tr>
<tr>
<td>ZGC02, 800°C, 48h</td>
<td>2nd of 4</td>
<td>366</td>
<td>358</td>
<td>10.9</td>
</tr>
<tr>
<td>ZGC03, 800°C, 48h</td>
<td>3rd of 4</td>
<td>352</td>
<td>350</td>
<td>13.7</td>
</tr>
<tr>
<td>ZGC04, 800°C, 48h</td>
<td>4th of 4</td>
<td>495</td>
<td>434</td>
<td>13.4</td>
</tr>
<tr>
<td>Avg.</td>
<td></td>
<td>391</td>
<td>372</td>
<td>14.0</td>
</tr>
</tbody>
</table>

*TE values are overestimated here from raw data

C. M. Silva, C. D. Bryan. “Evaluation of Zircaloy-4 as the structural material for the Target Solution Vessel and support lines of SHINE — Sample preparation for the third-round neutron irradiation” FY17 Report. ORNL/TM-2017/482
Large grain growth likely caused spread in tensile data for long hold 800°C treatments

- ZGB2, 9.1% elongation

Typical grain structure

Large grain boundary-free area corresponded to fracture location

- Long holds at 800°C cause large grain growth and scatter in tensile elongation
- Similar recoveries were measured for test temperatures below 800°C
- Future post weld heat treatments will be below 800°C
Hydrogen in Zircaloy-4

- The most significant source of H in reactors is from water corrosion

\[\text{Zr} + 2\text{H}_2\text{O} \rightarrow \text{ZrO}_2 + 2\text{H}_2 \]

- Radiolysis of water can also be a source
Zircaloy-4 has less H absorption than Zircaloy-2

- **Zircaloy-2 (Grade R60802)**
 - Zr
 - 1.5%Sn
 - 0.15%Fe
 - 0.1%Cr
 - **0.05%Ni**
 Responsible for significant H absorption

- **Zircaloy-4**
 - Zr
 - 1.5%Sn
 - 0.2%Fe
 - 0.1%Cr

https://www.atimetals.com/Products/Documents/datasheets/zirconium/alloy/Zr_nuke_waste_disposal_v1.pdf#search=zircaloy-4

C.L. Whitmarsh, Review of Zircaloy-2 and Zircaloy-4 properties relevant to N.S. Savannah reactor design, Oak Ridge National Laboratory, ORNL-3281, (1962)
Hydrogen effect on mechanical properties

- Hydrogen absorption in Zircaloy is expected to reduce the ductility.
- Historical data for Zircaloy-2 shows severe effect above ~100 ppm H.
- This must be tested for Zircaloy-4 under low temperature neutron irradiation.

Fig. 10. Effect of Hydrogen on Elongation of Zircaloy-2.

C.L. Whitmarsh, Review of Zircaloy-2 and Zircaloy-4 properties relevant to N.S. Savannah reactor design, Oak Ridge National Laboratory, ORNL-3281, (1962)
Hydrogen Charging

- Controlled hydrogen charging is accomplished with heating TiH$_2$ powder in a sealed vacuum tube with Zircaloy-4 samples present
- Samples with different ppm amounts are being produced now for inclusion in the neutron irradiation capsules

\[\text{TiH}_2(s) \rightarrow \text{Ti}(s) + \text{H}_2(g) \quad \text{[1]}\]

\[(1-x/2) \text{H}_2(g) + \text{Zr} \rightarrow \text{ZrH}_{2-x}(s) \quad \text{[2]}\]
Neutron Irradiation of Zircaloy-4

- Samples are being prepared for neutron irradiation in HFIR at temperatures of 60 and 100°C and fluences of 1×10^{20} and 1×10^{21} n/cm2 (E>0.1 MeV)

Testing plan for irradiated samples
- Tensile tests at room temperature
- Microhardness
- Microstructure
Sub-size specimens for in-reactor irradiation

- Cannot fit in HFIR irradiation capsules
- Would have very high activity level after irradiation
- Cannot be used.

- Size and dose are significantly reduced with SS-3 samples
- End tabs used for microhardness measurements and microstructure characterization.

For certain applications, even smaller tensile samples can be used for neutron irradiated tests.
Overview of IMET

- Six interconnected steel-lined examination cells containing 30 m² of workspace.
- Cells 1~3 focusing on mechanical testing
- Low alpha contamination facility (<70 dpm / 100 cm²).
- Irradiation capsule disassembly, mechanical testing (tensile, fracture testing, microhardness), density measurement, SEM, general characterization (optical, video documentation).

In-cell JEOL 6010LA and fractograph from irradiated tensile specimen
LAMDA: Low Activation Materials Development and Analysis

- **Overview**
 - Facility designated for the study of radiological materials by advanced characterization methods and instruments.
 - 4327 Sq. Ft of clean lab space and 2732 Sq. Ft of radiological contamination area
 - ~9000 specimens: fuels, metals, ceramics, graphite

- **Specimen acceptance criteria**
 - 100,000 dpm/100cm² beta/gamma
 - 2,000 dpm/100cm² alpha
 - 100 mR/hr @ 30cm

- **Core capabilities**
 - Microstructure characterization
 - Thermal/physical property
 - Mechanical testing
 - Machining irradiated materials
 - Various specialized instruments
Mechanical property testing instruments

- **Test Resource 160 series torsion test machine**
 - 125Nm torsion system
 - Adjustable speed to 8 rpm

- **Tinius Olsen Impact 104**
 - Pendulum impact tester; Charpy or Izod configuration
 - 30J capacity
 - Testing temperatures from -196 to 400°C

- **Creep test stands**
 - 1kN load capacity; Air environment
 - Temperature from -196 to 500°C

- **Buehler Wilson VH3100 microhardness tester (10 to 1000g load, programmable)**

- **Mituyoyo Vickers Microhardness (10 to 2500g load, programmable)**

- **Agilent Technologies G200 Nano Indentation system**

- **Sonic velocity measurement system**
 - Measure Young’s and shear moduli with the sonic velocity methodology according to ASTM C769 and C1419
Microscopes: TEM, FIBs, and SEM

FIB with cryo-stage: Good for sensitive materials (i.e., prevent hydriding of Zr alloys)

FEI Quanta 3D 200i Dual Beam

Shielded FIB: Control panel outside of 50 mm-thick lead envelope. Allows high-dose samples to be milled under ALARA conditions

FEI Quanta 3D 200i Dual Beam

High-Brightness FEG Electron Source
- 0.96 nm resolution

Available Detectors:
- Secondary electrons (ETD and in-column)
- Backscattered electrons (ETD & concentric)
- STEM
- Secondary ions

High-Brightness FEG Electron Source
- <1.7 nm resolution

Available Detectors:
- Secondary electrons (ETD and In-Lens)
- Retractable annular Backscattered electron detector
- Extended wavelength cathodoluminescence (CL) detector

FEI Versa 3D Hi-Vac Dual Beam

- JEOL JEM 2100F Transmission Electron Microscope (FEG, TEM/STEM, EDS, EELS)
- FEI Talos F200X Transmission Electron Microscope (X-FEG, TEM/STEM, super-X EDS)
- XRADIA X-ray Tomography
- Positron Annihilation Spectroscopy

FEI Quanta 3D 200i Dual Beam

FEI Quanta 3D 200i Dual Beam

FEI Versa 3D Hi-Vac Dual Beam

Tescan MIRA3 GMH
Acknowledgements

- This research work was supported by the US Department of Energy’s National Nuclear Security Administration, Office of Material Management and Minimization, Molybdenum-99 Program. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US Department of Energy.

- Thanks to Brian Eckhart, Chris Bryan, Nesrin Cetiner

- Also thanks to Maxim Gussev, Xunxiang Hu, Christian M. Petrie, Keith J. Leonard, Kevin Field, Xiang Chen, Joshua E. Schmidlin, Chad Parish, Philip D. Edmondson, Yutai Katoh
Thank you very much for your attention.

Questions?

Lauren Garrison
garrisonlm@ornl.gov