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Abstract: SRNL has support accelerator production of Mo-99 since 2012. Use of Future Work: SRNL continues to evaluate tritium removal from SF, in FY23. In
deuterium accelerators using a tritium target require additional study and addition to current SRNL work, future Mo-99 support work will focus on actinide
development for gas handling, processing, storage, confinement, and waste processing, radiological facility issues, and waste disposition activities.

disposal. A brief description of some SRNL tritium-related studies to support Mo-

99 production are presented here.
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Aluminum Scroll Pump Development
Normetex 9 cfm all-metal pump no longer made
Stainless steel replacement heavy, $$S
Aluminum coated pump developed
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SRNL to Support the US Production of Mo-99
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Abstract: The SRNL is supported by the DOE National Nuclear Security Administration to provide R&D assistance to potential new US Mo-99 producers. The assistance includes
the development of flowsheets for the purification of U from dissolved targets following Mo-99 recovery and the removal of high specific activity fission products from waste
streams to lower the classification (e.g., Class C to Class A or B) of the waste form. A modified PUREX process was demonstrated for nominally 90% U recovery allowing the purge
of a small amount of U from the inventory each cycle to minimize the production of Pu during subsequent target irradiations. In small column tests using ammonium
molybdophosphate and crystalline silicotitanate (R9120-B) with a simulated acidic sulfate waste solution containing U, Pu, Np and non-rad fission product, both ion exchange
materials were highly specific for cesium. Neither material removed significant Sr or U.

U Recovery from Mo-99 Targets High Specific Activity Fission Product Separation
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UREX Process for U Purification * UREX Process Design
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Management and categorization of wastes resulting from Mo-99 production
J.W. Amoroso, Savannah River National Laboratory, Aiken, SC 29808

Abstract

—Appropriate waste management strategies are critical to the production of Mo-99 using low enriched
uranium (LEU). There are various Mo-99 production processes for which unique methods and
strategies for treatment and disposal of the waste streams is needed. Product specifications,

U.S. Waste Disposal Guidelines

—Title 10 of the Code of Federal Regulations (10 CFR) Part
61, ‘Licensing Requirement for Land Disposal of
Radioactive Waste” provides procedures, criteria, and

acceptance criteria, facility design, and process operations must all be considered as part of the

overall waste management strategy.

terms and conditions for the licensing of facilities for the
disposal of radioactive waste. Part 61.55 provides
guidance on the waste classification criteria.

Waste Stream Projections
—Contact handled waste
—Process system components .
—Excessed equipment & large items Sils
—Process raffinate ;
«Compute estimated radionuclide inventory
from irradiation and decay based on
projected processing steps and volumes

Normalized activity of Sr-90 and Cs-137 as a function of concentration in an example combined process raffinate. 10

CFR Part 61 waste classification limits are shown for reference

—10 CFR Part 61.55, “Waste Classification” establishes
criteria and limits for each of the three classes of waste (A,
B, and C) that can be disposed of in near surface disposal
sites. Waste that is not acceptable for near-surface
disposal is waste for which form and disposal methods
must be in general more stringent than those specified for
Class C waste.

—Extreme measures of adding non-radioactive material or
diluting the waste to circumvent stricter disposal
requirements should not be used.

Waste Solidification

—Reduce the long-term environmental burden through efficient disposal of
waste materials

—Chemically bind the radioactive and hazardous components into a solid,
durable material that will withstand degradation for thousands of years

—The choice of material is dependent on the application and often is a
compromise between factors such as cost, performance, and suitability

*Crystalline ceramic
«Vitrified glass
*Cementitious materials
«Composite

Instrumented drum

Pilot solidification test rig

Hydrogen Generation

—Published characteristics (i. e. deposited energy (W/Ci), decay mode) and
published G values (molecules H, / 100 eV) for beta/gamma and alpha
irradiation of pure water were used to calculate hydrogen generation rates for
various scenarios

—Incorporate best fit exponential and linear functions to integrate the hydrogen
generation (moles) from most radioisotopes

‘Water Content (10%)

Calculated pressure buildup in a sealed SHINE solid waste drum as a
function of free volume (v/% of 208 L drum) and decay time.

Calculated hydrogen generation rate from projected SHINE in-drum solid waste
radionuclide inventory as a function of decay time and water content.

Future Work

—Continue to evaluate process system flowsheets to compute
waste stream estimates

—Evaluate waste management strategies to ensure available
disposition path

—Provide waste form design and processing experience to

Uranium Lease and Take Back (ULTB) Program
—U.S. program to use lease contracts to make LEU available for the domestic production of Mo-99 for medical uses

—U.S. program to use take-back contracts for the final disposition of spent nuclear fuel created by the irradiation,
processing, or purification of leased LEU for which there is no commercial disposition path

«Includes radioactive waste created by the irradiation, processing, or purification of leased LEU, for which the producer does not

facilitate efficient waste disposition strategies have access to a disposal path

SRNL-MS-2022-00204
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