

R fwrehu3:/#5355 Yhqqd

GHYHOR SP HQW#R I#D#SODVP D#DIGHG #IOX R UIQ DWIR Q # SUR FHVV#IR U#P R 0< < #VHSDUDWIR Q ^{WR ELDV#FKHPQIM}]

Why is ⁹⁹Mo of any importance?

- ^{99m}Tc most widely used radioisotope in nuclear medicine
- 30 million procedures worldwide per year
- about 3 million procedures in Germany alone

motivation

Mo-99/Tc-99m supply chain

background

Fission products in LEU targets (19.75%, 20g)

Nuclide vector after irradiation period of 180 h, 24 h after end of irradiation

element	mass [mg]	percentage
Xe	35.5	0.178
Zr	28.5	0.143
Ce	25.2	0.126
Мо	17.5	0.088
Nd	16.7	0.084
Ва	15.5	0.078
Ru	14.3	0.072
Sr	11.8	0.059
Cs	11.2	0.056
La	9.3	0.047
Pr	6.5	0.032
Υ	5.0	0.025
Те	4.9	0.024
Тс	3.6	0.018
Pu	3.3	0.017
	3.3	0.016
Kr	3.1	0.015
Rb	3.0	0.015
Sm	2.2	0.011

Alkaline dissolution process very efficient for HEU targets, BUT:

Source: Lee et al., Development of Industrial-Scale Fission 99Mo Production Process Using Low Enriched Uranium Target

- significant increase in volume of intermediate level liquid waste (ILLW) for LEU targets by up to 200%
- corresponding to 15,000 I ILLW/year per 10,000 6-day Ci/wk fission ⁹⁹Mo

GENERAL PROCESS

FLUORINATION

Lanthanoids	CeF ₄	PrF₃	NdF₃	PmF₃	SmF₃	EuF₃	GdF₃	TbF₃	DyF ₃	HoF₃	ErF₃		
Actinoids	ThF₄	PaF₃	UF ₆	NpF ₆	PuF ₆	AmF₃	CmF₃						

8

Microwave Plasma Fluorination Line

fluorination

Surrogate Fluorination

composition U/Mo	nominal [wt%]	MS [wt%]
99 : 1	1.00	1.144 ± 0.201
99.5 : 0.5	0.50	0.546 ± 0.040
99.9 : 0.1	0.10	0.123 ± 0.004

fluorination

► MoO₄²⁻

Hydrolysis

Chemical

separation

Surrogate Fluorination

ignition Ar plasma

t + 02:20 min Ar/NF₃ plasma

t + 14:10 min Ar/NF₃ plasma

Physical pre-separation

Fluorine radicals from NF₃ plasma

Fluorination

Cladding separation

t + 36:30 min Ar/NF₃ plasma

 $Mo + 2 NF_3 \longrightarrow MoF_6 + N_2$ $U + 2 NF_{3} VF_{6} + N_{2}$

→ significant amount (42 %) of non-volatile decay products stays behind

CHEMICAL UMO SEPARATION

chemical UMo separation

15

Chemical separation with gaseous CO (R. Stene)

$$2 UF_6 \xrightarrow{395 nm} 2 UF_5 + F_2$$

$$2 UF_6 + CO \xrightarrow{395 nm} 2 UF_5 + COF_2$$

UF₆/MoF₆ mixture

UF₅/MoF₆ mixture

Source: Reductive photo-chemical sparation of the hexafluorides of uranium and molybdenum

Chemical separation with gaseous CO (R. Stene)

$$2 \text{ UF}_6 \xrightarrow{395 \text{ nm}} 2 \text{ UF}_5 + \text{F}_2$$
$$2 \text{ UF}_6 + \text{CO} \xrightarrow{395 \text{ nm}} 2 \text{ UF}_5 + \text{COF}_2$$

UF₆/MoF₆ mixture

UF₅/MoF₆ mixture

Source: Stene et al., Reductive photo-chemical separation of the hexafluorides of uranium and molybdenum

	mixture before	mixture after	mixture after
		(Mo side)	(U side)
U [mg]	133.2	n.d.	39.3
Mo [mg]	91.5	29.14	0.16
wt% Mo	40.7	100	0.4

 \rightarrow very good separation

but: total irradiation time 48 h

chemical UMo separation

Fluorine radicals from NF₃ plasma **Chemical separation with supercritical CO** Cladding Physical pre-separation Chemical Fluorination ► MoO₄²⁻ separation separation Hydrolysis (5) (4) 3 $p_{max} = 230 \text{ bar} (SF = 4)$ 1 2 tested with Ar at 80 bar for 6 h Irradiation for 60 minutes

Chemical separation with supercritical CO

solid UF₆/MoF₆

solid UF₆/MoF₆ with supercritical CO

after irradiation for 7 minutes

end of irradiation after 60 minutes

Fluorine radicals from NF₃ plasma Cladding Physical pre-separation Chemical Fluorination MoO₄²⁻ separation separation Hydrolysis 0.9 UF₆/MoF₆ MoF₆ MoF₆ 0.8 (COF)2 0.7 90 0.6 10 0.5 10 0.4 10 0.3 11 1 COF₂ M COF₂ ŧ LN2 outlet COF₂ (COF)₂ (COF)₂ COF, LN2 inlet 0.2 2 0.1 0 ²²⁰⁰ ↑ CO 800 Î MoF₆ 2600 2400 2000 1800 1600 1400 1200 1000 600 wavenumber [cm⁻¹] 2

Chemical separation with supercritical CO

Chemical separation with supercritical CO

	mixture before	storage container ②	high-pressure container ①		
		(Mo side)	(U side)		
U [mg]	26.8 ± 0.3	2.99 ± 0.60	20.96 ± 0.63		
Mo [mg]	7.5 ± 0.3	7.35 ± 0.06	0.08 ± 0.06		
wt% Mo	21.9 ± 0.7	71.2 ± 1.7	0.4 ± 0.3		
		Ļ	Ļ		
		Mo recovery 98.0%	U recovery 78.2%		
\rightarrow good separation/					

→ good separation/ optimization necessary

center for nuclear safety and innovation

WKDQN \RX

IJUDG IDWIR Q #VDUJ HWV #W1#K R OOP HU, outer aluminium tube interlayer (~10µm) følgglgj uranium foil (~130µm) p hdw interlayer (~10µm) følgglgj inner aluminum tube

Vrxufh#Glvhudwlrq#W#Krop hu , Ghyhorsp hqwlrid#SYG Oedvhg p dqxidfwulgj surfhvv rip rqrdwlf OHX #ludglwlrq wlujhw irušP r#surgxfwlrq

FRUURVIRQ#DVSHFWV#, DIWHU#EHIQJ#QVWDOOHG#LRU#5#\HDUV#

FRUURVIRQ#DVSHFWV#, DIWHU#EHIQJ#QVWDOOHG#LRU#5#\HDUV#

